메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
추천 시스템은 사용자의 선호도를 분석하고, 아이템에 대한 사용자의 선호도를 예측하여 아이템을 추천하는 시스템이다. 다양한 추천 기법 중에 협동적 여과(collaborative filtering)는 상용화된 시스템에 성공적인 적용이 이루어진 기법이다. 그러나 협동적 여과는 데이타의 희소성 문제(sparseness problem)와 초기 추천 문제(cold-start problem)에 대해 취약점을 가지고 있다. 만약 매우 적은 양의 선호도 데이타가 존재하면 많은 유사 사용자를 찾기 어려우며, 이것은 추천 성능을 저하시키는 요인으로 작용한다. 또한 선호도 정보가 없는 새로운 사용자에게는 아이템을 전혀 추천할 수 없는 문제가 발생한다. 본 논문에서는 사용자와 아이템에 대한 추가 속성 정보를 통합하여 협동적 여과의 희소성 문제와 초기 추천 문제를 해결하고 추천 성능을 향상시키는 기법을 제안한다. 본 논문에서 제안하는 기법은 추가 속성 정보의 확률분포를 이용하여 알려지지 않은 선호도 값을 예측함으로써 선호도 데이타를 변경하고, 변경된 선호도 데이타에 협동적 여과를 적용하여 top-N 추천을 생성하는 것이다. 이와 같은 선호도 데이타 변경 기법을 데이타 블러링(data blurring)이라 한다. 몇 가지 실험 결과를 통해 제안된 기법의 효과를 확인하였다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 데이타 블러링

4. 성능 실험

5. 결론 및 향후 연구

참고문헌

저자소개

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015186028