메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
확산(Diffusion)을 이용한 기존의 칼라영상 분할은 확산의 횟수가 반복될수록 경계선 정보가 적절히 유지되지 못하거나 잡음을 제거하지 못함으로써 워터쉐드(Watershed) 알고리즘을 적용하는 경우, 과분할을 피할 수 없다는 단점을 갖고 있다. 본 논문에서는 수리 형태학(Mathematical Morphology)과 비선형 확산(Non-Linear Diffusion)을 함께 적용하여 과분할의 문제점을 제거한 워터쉐드 결과를 얻을 수 있는 칼라영상 분할방법을 제안한다. 임의의 칼라 영상을 LUV 색상공간으로 변환하여, 그 각각의 색상공간에 수리 형태학을 응용한 재구성에 의한 닫힘(Reconstruction) 연산과 비선형 확산을 함께 적용하여 경계선을 적절히 유지하면서 잡음을 제거한 단순 영상을 획득할 수 있다. 이 영상에서 칼라 영상의 기울기(Gradient) 정보를 획득하고, 워터쉐드 알고리즘을 적용하여 영상을 분할한다. 실험 결과, 기존의 방법보다 과분할이 현저히 제거되고, 칼라 영상이 매우 효과적으로 분할됨을 확인하였다.

목차

요약

Abstract

1. 서론

2. 기존 연구 : 비선형 확산을 이용한 영상분할

3. 모폴로지 재구성 연산과 비선형 확산을 적용한 영상 분할

4. 실험 및 실험 결과

5. 결론

참고문헌

저자소개

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015186008