메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.19 No.11
발행연도
2005.11
수록면
1,975 - 1,987 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
An input time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computers. In this paper a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed. The mathematical structure of the new discretization method is analyzed. On the basis of this structure the sampled-data representation of nonlinear systems with time-delayed multi-input is presented. The delayed multi-input general equation has been derived. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. Additionally, hybrid discretization schemes that result from a combination of the scaling and squaring technique (SST) with the Taylor series expansion are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method’s parameters to meet CPU time and accuracy requirements, are examined as well. A performance of the proposed method is evaluated using a nonlinear system with time delay : maneuvering an automobile.

목차

Abstract

1. Introduction

2. Nonlinear System with Delayed Input

3. General equation derivation

4. Scaling and Squaring Technique(SST)

5. Computer Simulations

6. Conclusions

Acknowledgments

References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-018231325