메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국태양에너지학회 한국태양에너지학회 학술대회논문집 한국태양에너지학회 2004 Proceedings ISEA Asia-Pacific
발행연도
2004.10
수록면
121 - 127 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, heat pump (HP) hot-water supply systems, in which energy saving is high at primary energy level, are being introduced. In solar-heat/HP/storage tank hot-water supply systems, much higher energy saving is expected. From an economical viewpoint, it is desirable that the HP hot-water supply system is operated using night time electricity whose energy charge is one third of that of during the daytime. If the solar heat of the next day is sufficient, the HP does not need to be operated. On the other hand, if the solar heat of the next day is not sufficient, the HP needs to be operated. In order to operate this kind of system effectively, it is important to forecast insolation of the next day with good accuracy. This paper presents insolation forecasting with the artificial neural network. Especially, the influence of atmospheric pressure on insolation forecasting is discussed. In this study, forecasting the insolation of the next day by using the neural network is proposed, and inputting atmospheric pressure of the next day. And, the atmospheric pressure data is forecasted by using the neural network, too.

목차

Abstract

1. Weather Data

2. Artificial Neural Networks

3. Forecast of Atmospheric Pressure

4. Forecast of Clearness Index

5. Conclusion

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-563-018203197