메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지구 관측 시스템(EOSDIS)나 많은 수의 클라이언트를 추적하는 이동전화 서비스 등 많은 응용에서는 지속적으로 생겨나는 대량의 복잡한 데이타들을 보관하고 인덱싱하는 것이 매우 어려운 일이다. 다차원 데이타를 효과적으로 관리하기 위해 R-tree에 기반한 인덱스 구조가 널리 사용되어 왔다. 본 논문에서는 빠른 데이타 생성 속도를 따라잡으면서 대량 삽입을 통해 R-tree를 관리할 수 있는 seeded clustering이라는 확장성있는 기법을 제안한다. 이 기법에서는 삽입할 대상 R-tree의 상위 k레벨의 구조를 활용하여 시드 트리를 만들어 삽입 데이타를 분류해 클러스터를 생성한다. 그리고 각 클러스터로부터 삽입 R-tree를 생성하고 이를 대상 R-tree에 한 번에 하나씩 삽입한다. 논문에서는 자세한 알고리즘과 함께 다양한 실험 결과를 보여준다. 실험 결과를 통해 seeded clustering을 이용한 대량 삽입이 기존의 대량 삽입 기법들과 비교해 삽입이나 질의 처리 모두에서 우수함을 알 수 있다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. Seeded Clustering

4. 대량 삽입

5. 실험

6. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017918175