메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 생물정보 기술이 암 진단의 새로운 방법으로 관심을 모으고 있다. 다양한 기계학습 기법이 적용되어 우수한 결과를 얻고 있지만 의학 분야에서는 정확률이 높은 분류기뿐만 아니라 획득된 분류규칙을 사람이 분석하고 이해할 수 있어야 한다. 생물정보 기술에서 많이 이용되는 유전자 발현 데이타는 데이타 내에 수천 내지 수만의 변수가 존재하며, 직접 이들 사이의 복잡한 관계를 표현하고 이해하는 것은 매우 어렵다. 본 논문에서는 이러한 어려움을 극복하기 위해 유전자 발현 데이타에서 분류에 유용한 특징들을 추출하고 산술 연산자 기반 유전자 프로그래밍으로 암 분류규칙을 생성하는 방법을 제안한다. 림프종 유전자 발현 데이타에 대하여 실험하여 96.6%의 인식률을 얻었으며, 획득된 분류 규칙을 분석하여 다양한 지식을 발견할 수 있었다.

목차

요약

Abstract

1. 서론

2. 배경

3. GP 기반 분류 규칙 발견

4. 실험 및 결과

5. 결론

참고문헌

저자소개

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890770