메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 실시간 응용을 위해 형판 정합 방법을 기반으로 하면서 동시에 외형 기반 (appearance_based) 방법에서 제시하는 학습 모델을 이용한 새로운 얼굴 검출 방법을 제안한다. 우선, 빛이나 조명의 영향에 의한 오류를 방지하기 위한 효과적인 전처리 과정으로 최소-최대 정규화(Min-max Normalization) 방법과 히스토그램 정규화 방법을 적용시킨다. 그런 뒤에 입력 영상과 형판을 PCA 변환하여 각각의 주성분(PC : Principal Component)을 생성하고 이를 LDA 변환한다. PCA 및 LDA 변환된 형판을 이용하여 입력 영상과의 거리 값을 구한 후 거리 값이 가장 작은 영역을 얼굴 영역으로 선택하고, 선택된 영역은 SVM을 이용하여 얼굴인지 아닌지를 검증하는 과정을 거친다. 또한, 본 논문에서는 실시간 얼굴 검출 방법을 위해 전체 영역이 아닌 ±12 화소 크기의 탐색 윈도우를 이용하여 시스템의 속도 및 정확도를 고려하도록 하였다. 실제 환경과 같은 6개 부류의 동영상을 중심으로 실험한 결과, 본 논문에서 제안하는 방법이 기존의 PCA 변환만을 이용한 방법보다 좋은 성능을 보여줌을 알 수 있었고, 또한 SVM을 이용한 얼굴 검증 과정을 추가한 방법이 PCA 변환과 LDA 변환을 사용한 방법보다 좋은 성능을 보여줌을 알 수 있었다.

목차

요약

Abstract

1. 서론

2. 주성분의 LDA 변환

3. 얼굴 영역 검출

4. 얼굴 검증

5. 실험 결과

6. 결론 및 향후 연구과제

참고문헌

저자소개

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890018