메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 디졸브 모델링 오차를 이용한 디졸브 검출 방법을 제안한다. 디졸브 모델링 오차는 디졸브 구간을 구성하는 두 장면 사이에 상관성이 없는 이상적인 디졸브 모델과 상관성이 존재하는 실제 디졸브 사이의 차이로 정의 된다. 제안된 방법은 두 단계로 구성된다. 첫 번째 단계에서는 분산 곡선에서 나타나는 디졸브 구간의 특성인 아래로 볼록한 포물선을 검출하여 디졸브 후보 구간을 설정한다. 두 번째 단계에서는 선택된 후보 구간 각각에 대해 디졸브 모델링 오차를 정의하고 모델링 오차가 기준치와 비교한다. 기준치는 목표 모델링 오차로 각 후보 구간의 분산과 사용자에 의해 주어지는 목표 상관성에 대한 함수로 표현됨으로 제안된 기준치, 목표 모델링 오차는 각 후보 구간의 분산 변화에 적응적이다. 제안한 디졸브 검출 방법은 디졸브 구간을 구성하는 두 장면의 상관성을 고려하므로, 의미론적 디졸브 검출 방법이 될 수 있다. 제안된 방법을 다양한 동영상에 적용하여 성능을 평가하였다. 실험 결과 제안한 방법이 다양한 분산의 변화에도 불구하고 기존의 방법보다 정확하고 신뢰성 높은 디졸브 검출 결과를 나타내었다.

목차

요약

Abstract

1. 서론

2. 디졸브 모델과 특징

3. 디졸브 검출

4. 실험 및 결과

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017874181