메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 MPEG 비디오 데이타의 컷(cut)과 디졸브(dissolve)를 검출하여 샷(shot) 단위로 분할하고 각 샷의 카메라 동작 또는 객체 움직임의 형태를 분류하는 방법을 제안하고자 한다. 정확한 샷의 위치와 카메라, 객체의 세분화된 동작을 구별하기 위한 전단계의 연구에서[1] 우선 MPEG 데이타의 I(Intra) 프레임의 DC(Direct Current) 계수를 분석하여 픽처 그룹을 Shot(장면이 바뀐 경우), Move(카메라 동작 또는 객체가 움직인 경우), Static(영상의 변화가 거의 없는 경우)으로 세분화하여 분류하였다. 이 과정에서 2단계 구조의 신경망을 구성하고 여러 종류의 특징을 서로 다른 해상도에서 추출하여 결합시키는 방법을 제안하였다. 다음 단계로 Shot 또는 Move로 분류된 픽처 그룹의 P(Predicted), B(Bidirectional) 프레임을 선별적, 계층적으로 탐색하여 컷의 정확한 발생 위치와 카메라 동작 또는 객체 움직임의 종류를 결정하는 방법을 제안한다. P, B 프레임의 매크로 블록의 종류별 분포를 통계적으로 이용하여 컷의 발생 위치를 검출하며, P, B 프레임의 매크로 블록 종류와 움직임 벡터를 동시에 사용하는 신경망을 구성하여 디졸브, 카메라 동작, 객체 움직임의 종류를 검출한다. 본 논문에서 제안하는 방법은 MPEG 데이타의 압축을 풀지 않은 상태에서 I 프레임의 DC 계수만을 사용하여 픽처 그룹을 분류하며, 분류된 픽처 그룹 내에서 일부의 P, B 프레임만을 계층적으로 선택하여 탐색함으로서 처리 시간을 감소시키고자 하였다. 세 종류의 서로 다른 비디오 데이타를 사용한 실험에서 93.9-100.0%로 픽처 그룹을, 96.1-100.0%로 컷을 검출하였다. 또한 두 종류의 비디오 데이타를 사용한 실험에서 90.13% 및 89.28%의 정확성으로 카메라 동작 또는 객체 움직임을 분류하였다.

목차

요약

Abstract

1. 서론

2. 제안하는 방법

3. 실험 및 분석

4. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017862790