메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전체 영상을 이요하지 않고 영상 안에 포함된 특정 객체 혹은 영역만을 이용하는 “영역에 의한 질의(query-by-region)" 방법은 내용기반 영상 검색 중 상위개념의 방법 이지만, 영상 분할의 한계, 여러 개로 분할된 영역을 모두 검색하기 위한 인덱싱 문제, 유사성 측정 시 선형적으로 분리되지 않는 특징값들에 대한 무리한 선형 조합으로 인한 검색 오류와 같은 많은 문제점을 안고 있다. 따라서 본 논문에서는 영역 기반 영상 검색 시스템인 FRIP에 대하여 영상 분할의 한계를 극복하고, 사용자의 주관성을 영상 검색에 적용하기 위해 확률적 연관성 학습 모델(MPFRL)을 유사 ... 전체 초록 보기

목차

요약

1. 서론

2. 관련연구

3. 확률적 부울 이접 모델(Probabilistic Boolean Disjunctive Model)

4. 가중치 갱신을 위한 확률적 특징 값의 연관성 학습

5. 실험 결과

6. 결론

7. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017868898