메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 전자공학회논문지 CI편 제43권 제1호
발행연도
2006.1
수록면
53 - 66 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 전체 차원으로 데이터베이스 내의 모든 영상에 대해 순차적인 검색을 했을 때의 상세 검색 결과와 동일한 적합성을 유지하면서 검색 속도를 훨씬 더 향상시킬 수 있는 통합 검색 시스템을 제안한다. 통합 검색 시스템은 적합성을 유지하는 서로 다른 두 독립적인 시스템이 병합되어 있다. 하나는 특징 벡터 차원 축약을 이용한 2단계 검색 시스템이고, 나머지 하나는 이진 트리 클러스터링을 이용한 2단계 검색 시스템이다. 각각의 방법은 1단계에서 상세 검색에서의 검색 결과를 항상 포함하는 후보 영상들을 추출하고, 추출된 후보 영상들을 대상으로 2단계 검색에서 전체 차원으로 재 검색을 한다. 그러므로 각 방법과 통합 검색 방법은 모두 상세 검색을 수행했을 때와 동일한 검색 결과를 얻게 된다. 특징 벡터 차원 축약을 이용한 2단계 검색 방법은 Cauchy- Schwartz 부등식의 성질을 이용하여 특징 벡터를 차원 축약하여 검색에 사용하는 방법이다. 이때 전체 검색 시간을 최소로 하는 최적 차원 축약율이 존재하게 되고, 이를 후보 영상 추출을 위한 1차 검색에 적용하게 된다. 이진 트리 클러스터링을 이용한 2단계 검색 방법은 재귀적인 2-means 클러스터링을 통해 각 클러스터의 반경이 동일하게 동적으로 분할하는 방법이다. 동일한 적합성 유지를 위해 유사도 기준이 보정된 질의를 통해 1단계 검색에서 후보 클러스터를 추출하고, 2단계 검색에서 후보 클러스터 내의 영상을 대상으로 최종 결과 영상들을 얻게 된다. 통합 검색 방법은 위의 두 검색 방법을 통합한 것으로 서로 독립적인 두 방법을 동시에 적용함으로써 검색 시스템의 성능을 훨씬 더 향상시킬 수 있다. 제안하는 방법은 상세 검색의 적합성을 유지하면서도 검색 속도를 훨씬 더 향상시킬 수 있음이 실험을 통해 입증되었다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 특징 벡터의 차원 축약을 이용한 검색

Ⅲ. 이진 트리 클러스터링을 이용한 검색

Ⅳ. 통합 검색시스템

Ⅴ. 실험 결과

Ⅵ. 결론

참고문헌

저자소개

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-001509532