메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 문자인식의 특징선택방법으로 2차원 웨이브렛 패킷을 이용하는 새로운 방법을 제안한다. 영상자료의 특징들로부터 중심특징을 선택하기위한 차원축소 기법으로 주성분분석 기법이 주로 사용된다. 하지만, 주성분분석 기법은 고유시스템에 의존하기 때문에, 이상치나 잡음등에 민감할 뿐만 아니라, 전역적 특징만을 선택 하는 경향이 있다. 때때로, 영상자료의 중요한 특징이 가장자리 부분이나 뾰족한 부분 같은 지역적 정보일 수 있다. 이러한 경우, 주성분분석 기법은 좋은 결과를 줄 수 없다. 또한 고유시 스템은 많은 계산시간을 요구한다.
본 논문에서 원 자료는 2차원 웨이브렛 패킷기저에 의해 변환되고, 최적 판별 기저가 탐색된 후, 그것으로부터 적절한 특징이 선택된다. 주성분분석 기법과 비교하여, 제안된 방법은 웨이브렛의 좋은 특성에 의해 전역적 특징뿐만 아니라 지역적 특징의 선택이 빠른 계산시간으로 이루어진다.
제안된 방법의 성능을 보이기 위해 PCA와 제안된 방법의 인식률의 실험결과가 분석되었다.

목차

요약

Abstract

1. INTRODUCTION

2. TWO - DIMENTIONAL WAVELET PACKET FUNCTIONS

3. PROPOSED ALGORITHM : 2DWP - DB

4. EXPERIMENTS AND CONCLUDING REMARKS

REFERENCES

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017863171