메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
문서 여과 문제 (text filtering)는 어떤 문서가 특정한 주제에 속하는지의 여부를 판별하는 문제이다. 인터넷과 웹이 널리 퍼지고 이메일로 전송되는 문서의 양이 폭발적으로 증가함에 따라 문서 여과의 중요성도 따라서 증가하고 있는 추세이다. 이 논문에서는 새로운 학습 방법인 에이다부스트 학습 방법을 문서 여과 문제에 적용하여 기존의 방법들보다 우수한 분류 결과를 나타내는 문서 여과 시스템을 생성하고자 한다. 에이다 부스트는 간단한 가설의 집합을 생성하고 묶는 기법인데, 이 때 각각의 가설들은 문서가 특정 단어를 포함하고 있는지 검사하여 이에 따라 문서의 적합성을 판별한다. 먼저 최종 여과 시스템을 구성하는 각 가설의 출력이 1 또는 -1이 되는 이진 가설을 사용하는 기존의 에이다부스트 알고리즘에서 출발하여 좀 더 최근에 제안된 확신 정도 (실수값)를 출력하는 가설을 이용하는 에이다부스트 알고리즘을 적용함으로써 오류 감소 속도와 최종 오류율을 개선하고자 하였다. 또 각 데이타에 대한 초기 가중치를 연속 포아송 분포에 따라 임의로 부여하여 여러 번의 부스팅을 수행한 후 그 결과를 결합하는 방법을 사용함으로써 적은 학습 데이타로 인해 발생하는 과도학습의 문제를 완화하고자 하였다. 실험 데이타로는 TREC-8 필터링 트랙 데이타셋을 사용하였다. 이 데이타셋은 1992년도부터 1994년도 사이의 파이낸셜 타임스 기사로 이루어져 있다. 실험 결과, 실수값을 출력하는 가설을 사용했을 때 이진값을 갖는 가설을 사용했을 때 보다 좋은 결과를 보였고 임의 가중치를 사용하여 여러번 부스팅을 하는 방법이 더욱 향상된 성능을 나타내었다. 다른 TREC 참가자들과의 비교결과도 제시한다.

목차

요약

Abstract

1. 서론

2. 부스팅 및 배깅 학습 방법

3. 문서 여과 문제

4. 연구 방법

5. 실험 및 평가

6. 결론 및 토의 사항

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017862932