메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
단어의 연관성을 이용하여 문서의 특징을 추출하는 기존의 방법은 주기적으로 프로파일을 갱신해야 하는 문제점, 명사구를 처리해야 하는 문제점, 색인어에 대한 확률을 계산해야 하는 문제점 등을 포함한다. 본 논문에서는 연관 단어 마이닝을 사용하여 문서의 특징을 효율적으로 추출하는 방법을 제안한다. 제안한 방법은 Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 벡터로 표현한다. Apriori 알고리즘을 사용하여 문서로부터 추출된 연관 단어는 이를 구성하는 수와 신뢰도와 지지도에 따라 차이를 보인다. 따라서 본 논문에서는 문서 분류의 성능을 향상 시키기 위해 연관 단어를 구성하는 단어의 수와 신뢰도와 지지도를 결정하는 효율적인 방법을 제안한다. 연관 단어 마이닝을 이용한 특징 추출 방법은 프로파일을 사용하지 않으므로 프로파일 갱신의 필요성이 없으며, 색인어에 대한 확률을 계산하지 않고도 Apriori 알고리즘의 신뢰도와 지지도에 따라 자동으로 명사구를 생성하므로 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존 방법에 대한 문제점을 해결한다. 제안한 방법의 성능을 평가하기 위해 Naive Bayes 분류자를 이용한 문서 분류에 적용하여 정보이득, 역문헌빈도의 방법과 비교하며, 또한 색인어의 연관성과 확률 모델을 기반으로 단어의 연관성을 이용하여 문서 분류를 하는 기존의 방법과 각각 비교한다.

목차

요약

Abstract

1. 서론

2. 문서의 특징 표현

3. 연관 단어 마이닝을 사용한 특징 추출

4. 연관 단어 마이닝의 특징 추출을 사용한 문서 분류

5. 성능평가

6. 결론 및 향후과제

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017860190