메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
신경망을 이용한 추천 기술은 항목이나 사용자간의 가중치를 학습할 수 있고, 자료 유형에 상관없이 데이터 처리가 용이하다. 또한 최근 연구를 통해서 그 우수성이 입증되고 있다. 그러나 사용자간의 상관관계로 추천하는 사용자 신경망 모델과 항목 간의 상관관계로 추천하는 항목 신경망 모델이 서로 다른 관점으로 다른 선호도를 제시할 경우에 선택한 모델의 선호도에 따라 시스템의 성능이 좌우된다. 그러므로 효율적이고 성능이 우수한 추천 시스템을 위해 사용자와 항목 신경망 모델의 통합 방법을 제안한다. 두 모델 사이에 우선 순위를 결정하여 통합하는 순차적 ... 전체 초록 보기

목차

요약

1. 서론

2. 기존의 통합 방법

3. 신경망을 이용한 추천 [4]

4. 사용자와 항목 신경망 모델의 통합 방법

5. 실험

6. 결론 및 향후 연구

7. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017836592