메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 한국어 명사의 중의성 해소를 위해, 원시 말뭉치로부터 얻을 수 있는 지식원으로서 국소문맥을 정의하고 추출하는 방법을 제시한다. 동일한 국소 문맥을 갖는 서로 다른 명사는 그 의미가 유사하다는 직관을 바탕으로 대상 명사의 중의성 해소를 위해 대상명사를 포함하는 국소문맥과 동일한 국소문맥을 갖는 단어를 단서로 사용함으로써 학습 자료의 활용도를 높일 수 있고 빈도수가 적은 단어의 의미 중의성도 해결할 수 있으며, 용언의 확장을 통해 자료 부족 현상을 줄일 수 있다.
대상 명사는 동일한 국소문맥에 의한 단서들과의 최대 유사도 계산을 통해 그 의미가 결정된다. 두 단어간의 유사도는 WordNet으로부터 차용한 의미 계층 구조에서 두 단어가 가지는 개념 사이의 거리에 의해 계산된다. 최대 유사도를 계산하는 과정에서는 단서들의 중의성을 점차 줄여 나감으로써 유사도 계산의 속도를 향상시킬 수 있다. 대상 명사가 둘 이상의 국소문맥을 가질 때에는 각 국소문맥의 종류에 따른 가중치를 부여하여 국소문맥의 종류에 따른 의미제약의 차이를 구현하였다. 또 하나의 지식원으로서 사전 정의와 예문으로부터 공기정보를 얻고, 이를 국소문맥을 보완하기 위한 지식으로 사용하여 최선의 의미를 선택할 수 있도록 하였다.
실험을 통해, 제안하는 방법은 국소 문맥의 적용률이 높고, 공기 정보는 국소 문맥과 상호 보완적으로 사용되어 정확도를 높일 수 있음을 보였다. 본 방법을 실험한 결과, 사용된 단어의 의미 중의성이 크면서도, 기존의 의미 부착 말뭉치를 이용한 교사 학습 방식의 성능보다도 높은 정확도(89.8%)를 얻을 수 있었다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 본 WSD 시스템 구성

4. WordNet을 이용한 의미 계층 구조

5. 중의성 해소에 이용할 지식원

6. 의미 결정 알고리즘

7. 실험 및 결과 분석

8. 결론 및 향후 계획

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017797265