메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As mobile market grows more and more fast, the mobile contents market, especially music contents for mobile phones have recorded remarkable growth. In spite of this rapid growth, mobile web users experience high levels of frustration to search the desired music. New musics are very profitable to the content providers, but the existing collaborative filtering (CF) system can't recommend them. To solve these problems, we propose an extended CF system to reflect the user's real preference by representing the characteristics of users and musics in the feature space. We represent the musics using the music contents based acoustic features in multi-dimensional feature space, and then select a neighborhood with the distance based function. Furthermore, this paper suggests a recommendation for procedure for new music by matching new music with other users' preference.
The suggested procedure is explained step by step with an illustration example.

목차

Abstract

1. Introduction

2. Related Work

3. Overall Recommendation Procedure

4. Example

5. Conclusion

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-017696497