메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2005년 춘계학술대회논문집
발행연도
2005.5
수록면
607 - 613 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Ensemble에서 feature selection은 각 classifier의 학습할 데이터의 변수를 다르게 하여 diversity 를 높이며, 이것은 일반적인 성능향상을 가져온다. Feature selection을 할 때 쓰는 방법 중의 하나가 Genetic Algorithm (GA)이며, GA-SVM은 GA를 기본으로 한 wrapper based feature selection mechanism으로 response model과 keystroke dynamics identity verification model을 만들 때 좋은 성능을 보였다. 하지만 population 안의 후보들간의 diversity를 보장해주지 못한다는 단점 때문에 classifier들의 accuracy와 diversity의 균형을 맞추기 위한 heuristic parameter setting 이 존재하며 이를 조정해야만 하였다. 우리는 GA-SVM 알고리즘을 바탕으로, population안 후보들의 fitness를 측정할 때 accuracy 와 diversity 둘 다 고려하는 fitness function을 도입하여 추가적인 classifier 선택 작업을 제거하면서 성능을 유지시키는 방안을 연구하였으며 결과적으로 알고리즘의 복잡성을 줄이면서도 모델의 성능을 유지사켰다.

목차

Abstract

1. Introduction

2. Literature Review

3. Proposed Method

4. Experimental Design

5. Result

6. Conclusion and Future work

7. Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-017693362