메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.4 No.1
발행연도
2004.1
수록면
28 - 38 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is stud1ed A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm w1th a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two(2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance Furthermore, comparing the SNC position controller w1th the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system

목차

ABSTRACT

1.Introduction

2.Induction Machine Model for Position Control

3.On-line Trained Simple Neuro-Controller(SNC)

4.Design of the On-Line Trained Simple Neuro-Controllers(SNCs)

5.Design of the Proposed PI-D 2DOF Controller

6.Simulation Results of the Drive System

7.Conclusion

8.Appendix

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-560-014230446