메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제10권 제1호
발행연도
2004.6
수록면
109 - 123 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기업부도예측은 재무와 경영의사결정문제에서의 주된 인공신경망 응용분야라 할 수 있다. 일반적으로 인공신경망은 이 분야에서 매우 좋은 성과를 보이는 것으로 알려져 있지만 종종 잡음이 심한 데이터에 대해서는 일관성 있고 예측가능한 성과를 보이지 못하는 경우가 있다. 특히 학습용 자료가 매우 많아서 학습시간과 자료수집비용이 과대한 경우에는 적절한 자료의 축소가 되지 않고는 인공신경망을 학습시키는 것이 불가능한 경우도 있다. 사례선택기법은 자료의 차원을 축약시켜 주며 직접적으로 자료를 축소시켜 주는 방법이다. 사례기반 학습기법에서는 이미 몇 연구가 사례선택기법의 필요성을 주장한 바 있으나 인공신경망 모형에서 사례선택기법의 필요성을 주장한 연구는 거의 없다. 본 연구에서는 기업부도예측을 위한 인공신경망 모형에서 유전자 알고리즘을 이용한 사례선택기법을 제안한다. 본 연구에서 유전자 알고리즘은 다층 인공신경망에서의 계층별 연결강도를 최적화하고, 동시에 학습에 적합한 사례를 선택한다. 유전자 알고리즘에 의해 결정된 계층별 연결강도는 역전파오류 학습기법에서 종종 발생하는 국부 최적해에 수렴하는 현상을 최소화해 줄 것으로 기대되고, 선택된 학습용 사례는 학습시간의 단축과 예측성과를 향상시켜 줄 것으로 기대된다. 본 연구에서는 제안한 모형과 주요 데이터 마이닝 기법들의 성과를 비교연구한다. 실험결과, 제안된 방법이 인공신경망에서의 사례선택기법으로 유용한 것으로 나타났다.

목차

1. Introduction

2. Research background

3. A GA approach to instance selection for ANN

4. Comparative analysis on corporate bankruptcy prediction

5. Concluding remarks

References

요약

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-014197122