메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 전자공학회논문지 CI편 제41권 제2호
발행연도
2004.3
수록면
77 - 86 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
일반적으로 작은 구조의 신경 회로망은 좋은 일반화 성능을 나타내지만 원하는 학습 목표까지 학습하기가 어려운 경향이 있다. 반면에 큰 구조의 신경 회로망은 학습 데이터는 쉽게 배우지만 일반화 성능이 좋지 않은 경향이 있다. 따라서 좋은 일반화 성능을 얻기 위한 일반적인 방법은 학습이 되는 한도 내에서 최소 구조의 신경 회로망 즉 최적 구조 신경 회로망을 찾는 것이다. 본 논문에서는 가중치의 제곱과 뉴런 출력의 분산의 곱으로 정의되는 임팩트 팩터(ImF: Impact Factor)를 이용한 새로운 연결 소거 알고리즘을 제안한다. 그리고 함수 근사화 문제에 적용하여 제안된 방법이 효율적임을 보인다.

목차

요약

Abstrct

1. 서론

2. 기존의 연결 소거 알고리즘

3. 임팩트 팩터 연결 소거 알고리즘

4. 실험 결과 및 고찰

5. 결론

참고문헌

저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-013797990