메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
백용선 (대덕대학) 김용수 (대전대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제5호
발행연도
2010.10
수록면
672 - 676 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 연결강도를 조정할 때 결정 경계선 근처에 있는 데이터를 더 반영하는 학습법칙을 제안하였다. 이 학습법칙은 outlier가 결정 경계선에 미치는 영향을 줄여 더 나은 결정 경계선을 형성하도록 한다. 제안하는 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망의 구조에 적용하였다. IAFC 신경회로망은 배운 것을 유지하는 안정성이 있으면서, 새로운 것을 배울 수 있는 안정성이 있다. 이 퍼지 신경회로망의 성능과 LVQ(Learning Vector Quantization) 신경회로망 및 오류역전파 신경회로망의 성능과 비교하였다. 실험결과 제안하는 퍼지 신경회로망의 성능이 우수함을 보여주었다.

목차

요약
Abstract
1. 서론
2. 퍼지 신경회로망
3. 실험 및 결과
4. 결론
참고문헌
저자소개

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-028-003598066