메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2002년 춘계학술대회논문집
발행연도
2002.6
수록면
858 - 864 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 공작기계의 상당부분에서 자동화 및 무인화가 이루어지고 있는 추세이며, 이러한 대부분의 산업시설들과 기계류에는 회전체 부품들을 가지고 있다. 이들 부품들에서 베어링(Bearing)은 절대적으로 매우 중요한 부분을 차지하고 있으며, 만일 회전축시스템(Rotor System)에서 베어링의 심각한 이상은 시스템이 정지되는 사태를 불러일으킬 수도 있다. 따라서 이상에 대한 조기감지의 역할은 전체 시스템의 향상뿐만 아니라, 비용이나 시간적인 측면에서도 크나큰 이익을 가져다 줄 수 있다.
지금까지 이러한 회전축시스템에 대해 다양한 이상진단을 시도하여 왔으며 앞으로도 많은 종류의 이상진단이 이루어지리라 생각한다. 이런 다양한 형태의 이상진단은 시스템에서 추출되는 데이터를 여러 가지 기법과 추출하는 센서의 특징을 파악하여 이상진단 알고리즘을 수립하는 과정을 망라하게 된다. 특히 이상진단 알고리즘에는 측정된 데이터의 불착실성을 감안한 이론이 적용되어야 한다.
본 논문에서는 회전축시스템의 베어링에 대한 이상진단을 통계적 기법, Fuzzy Clustering, Neural Network과 Neuro-fuzzy를 이용한 기법과의 상호비교를 통해서 여러 종류의 이상을 구분하는 작업수행을 연구하고자 한다.

목차

Abstract

1. 서론

2. 다양한 베어링 진단 기법

3. 시스템의 실험장치 및 실험과정

4. 실험 데이터의 분석 및 고찰

5. 결과 및 향후과제

6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-013768219