메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 전자공학회논문지 SP편 제40권 제1호
발행연도
2003.1
수록면
139 - 147 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
동적 신경망은 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에 적용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(GRNN)으로 구성된 합성 신경망을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 합성 신경망은 LRNN으로 IIR-MLP와 GRNN으로 Elman RNN 신경망으로 구성되어 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측 성능의 상대적인 비교를 위해 Elman RNN과 IIR-MLP 신경망과 상호 비교하였다. 실험결과에 의하면 합성 신경망은 수렴속도과 정확도에서 더 우수한 성능을 보여줌으로써, 제안된 신경망이 기존의 다층 리커런트 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

목차

Ⅰ. 개요

Ⅱ. Locally and Globally RNN

Ⅲ. 실험 결과

Ⅳ. 결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-013686981