메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

Adinda Riztia Putri (금오공과대학교, 금오공과대학교 대학원)

지도교수
Dong-Seong Kim
발행연도
2023
저작권
금오공과대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Preserving low energy usage in the Internet of Things, particularly in the battery-powered sensors of Wireless Sensor Networks (WSN), is critical. Failure to address this issue will produce data faulty across the network, which will contribute to increased data retransmission numbers that consume more energy and eventually reduce the network lifetime. Instead of relying solely on the sensor to continuously send the environmental data, digital twin-based data prediction method can significantly reduce the transmission number and maintain sensor network lifetime. However, implementing the digital twin-based solution for smart IoT is such a challenge. The existing solutions need to clearly define the system impact on implementing the smart IoT solutions due to inadequate results. This study discusses the digital twin-based smart IoT, where the virtual sensor continuously provides the sensor data with minimal involvement of the actual sensor device to reduce data transmission. To address the hardware impact, the proposed data prediction model of L-MLPDP is deployed and carefully configured with a pruning method to comply with resource-constrained devices. The digital system performance impact is explainable by providing various loss prediction results such as RMSE, MAE, and R2. Additionally, the system CPU usage, network performance, and network scalability test result provide digital twin system performance on the hardware.

목차

등록된 정보가 없습니다.

최근 본 자료

전체보기

댓글(0)

0