메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

임태균 (동국대학교, 동국대학교 일반대학원)

지도교수
이명천
발행연도
2023
저작권
동국대학교 논문은 저작권에 의해 보호받습니다.

이용수10

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
This study is about the synthesis of modified glycol-based hydrogel adhesives, which could be used by human skin-attached devices such as smart sensors and wearable devices. With normal adhesives, it is difficult for them to adhere to substrates with low surface energy, specially to human skin (22~30 dyne/cm). Hydrogel adhesives were prepared by modifying glycol oligomers in various methods. The hydrogel adhesives made from modified glycol were examined by adhesive strength on substrates having various surface energies included the human skin.
Glycols are a type of diol containing two hydroxyl groups at both ends of its chemical structure which have been used widely in various industries. Poly(ethylene glycol diacrylate) (PEGDA) is one of the polymers made from glycol and is widely being used in industries.
PEGDA has an ester group in its chemical structure, which came from condensation reaction of reactants. The ester group usually can be decomposed easily by water and/or acids. This decomposition property of PEGDA has been used as an advantage in medical treatments extensively.
However, in the industry such, as transdermal (skin) attachable biosensors or wearable devices, decomposing reaction was considered a disadvantage since they are required to be attached long time or repeatedly several times on the human skin.
In this research, poly(ethylene-ran-propylene glycol) (PEP) random copolymer having molecular weight around 12,000 g/mol was used in the polymerization. PEP was condensed with acrylic anhydride to produce poly(ethylene-ran-propylene di-methacrylate) (PEPDMAESTER) containing ester groups. The final hydrogel adhesives were produced through UV curing the (PEPDMAESTER). The prepared adhesive which contains byproduct acid was exposed to acid decomposition and was monitored. After about 30 days, it was found that a part of the adhesive showed a liquid form as like before cross-linking.
PEPDMAURETHANE and PEPDMAETHER were prepared by reacting the hydroxyl groups with block-isocyanate or glycidyl methacrylate (GMA) to produce a glycol-based hydrogel resin. It contained acrylic groups for UV curing and showed a low degree of decomposition. While the prepared urethane or β-hydroxy-modified glycol hydrogel was exposed to the same condition and left for about 90 days, and showed no decomposition at all.
The contact angle of modified glycol-based hydrogel resins was measured on an silicon-coated release film with a surface energy of 30 dyne/cm to confirm the wettability of the materials with low surface energy, such as human skin. The deionized water dropped on the film and showed a contact angle of about 114˚, which showed that the film exhibited hydrophobicity. PEPDMAESTER, PEPDMAURETHANE, and PEPDMAETHER showed contact angles of 82.7˚, 78.7˚, and 71.9˚, respectively. It confirmed a good wettability of modified glycol-based hydrogel resins for LSE materials.
The adhesive properties of hydrogel resins were measured on the various substrates which have different surface energy. PEPDMAESTER adhesive showed peel strength in the range of 0.3 ~ 0.7 kgf/25mm on the. The hydrogel adhesives containing the β-hydroxy group exhibited peel strength in the range of 0.5 ~ 0.6 kgf/25mm, and urethane modified hydrogel showed peel strength in the range of 0.7 ~ 1.3 kgf/25mm.
It was confirmed that the modified hydrogel adhesive prepared in this study was significantly retarded in the decomposition reaction and exhibited good adhesive strength to LSE materials without using extra layer such as acrylics and silicons.
In addition, the hydrogel adhesives developed in this research are expected to be used in various industry area that require adhesion to LSE surfaces. In the applications on elastic and flexible substrates, such as human skin, the hydrogel adhesives developed in this research are expected to be served as fundamental and important components.

목차

제1장 서 론 1
1.1 접착제(接着劑)의 역사와 응용산업 3
1.2 점착제(粘着劑)의 역사와 응용산업 5
1.3 점접착의 메커니즘 7
1.4 하이드로젤 9
1.4.1 하이드로젤의 분류 10
1.4.2 하이드로젤의 소재와 응용 13
1.5 글리콜 16
1.5.1 글리콜의 유래 16
1.5.2 글리콜의 성질과 용도 16
1.5.3 글리콜의 독성 17
1.5.4 글리콜계 하이드로젤 17
1.6 연구의 목표 18
제2장 고분자 합성의 이론 20
2.1 고분자 합성 20
2.1.1 자유 라디칼 중합 20
2.1.2 광개시 라디칼 중합 23
2.1.3 축합 반응 23
2.1.4 개질 반응 25
2.1.5 가교 반응 25
제3장 하이드로젤 수지의 합성 및 분석 27
3.1 하이드로젤 수지의 합성 재료 27
3.2 하이드로젤 수지의 합성 방법 33
3.2.1 에스테르화 반응 34
3.2.2 GMA를 이용한 베타-히드록시 생성반응 35
3.2.3 에테르화 반응 37
3.2.4 우레탄 반응 38
3.3 글리콜계 하이드로젤 점착제 제조 40
3.3.1 단일 가교형 하이드로젤 46
3.3.2 Semi-IPN 하이드로젤 47
3.4 변성 젤라틴 수지 49
3.4.1 선형 젤라틴 수지 49
3.4.2 가교형 젤라틴 수지 50
3.5 글리콜계 하이드로젤 점착제의 분해거동 52
3.6 글리콜계 하이드로젤 점착제 분석 53
3.6.1 FT-IR 분석 53
3.6.2 겔 함량 분석 53
3.6.3 흡수율 분석 54
3.6.4 접촉각 분석 55
3.6.5 점착력 분석 57
3.6.6 AFM 분석 59
3.6.7 유변 물성 분석 61
3.6.8 PEG 올리고머의 독성 평가 62
3.6.9 BHT의 독성 평가 63
제4장 실험 결과 및 해석 66
4.1 개질된 글리콜계 하이드로젤 수지의 FT-IR 분석 66
4.1.1 에스테르화 반응된 하이드로젤 수지 66
4.1.2 GMA에 의해 메타크릴산이 제거된 하이드로젤 수지 67
4.1.3 에테르화 반응된 하이드로젤 수지 68
4.1.4 우레탄 변성 하이드로젤 수지 70
4.2 개질된 글리콜계 하이드로젤 점착제의 겔 함량 74
4.3 개질된 글리콜계 하이드로젤 점착제의 흡수율 76
4.4 개질된 글리콜계 하이드로젤 수지의 접촉각 84
4.5 개질된 글리콜계 하이드로젤 점착제의 점착 물성 88
4.6 개질된 글리콜계 하이드로젤 점착제의 유변 물성 92
4.7 AFM을 이용한 잔여물 분석 101
제5장 결 론 107
참 고 문 헌 109
Abstract 125

최근 본 자료

전체보기

댓글(0)

0