미세플라스틱 (MPs)은 전 세계적으로 공기, 바다 및 토양에 분포되어 있다. 환경에서 MPs가 환경과 잠재적으로 인간의 건강에 미치는 유해한 영향에 대한 인식이 증가하고 있다. 일반적으로 MPs 제거를 위해 여과, 생물학적 분해 및 응고 (MPs를 더 큰 응고물로 결합하는 과정)의 세 가지 방법이 사용된다. 여과법의 제거 효율은 필터의 기공 크기나 응고된 MPs의 크기에 따라 다르다. 생물학적 분해는 친환경적이지만 MPs 분해가 4주 동안 5%만의 제거되는 단점이 있다. Fe- 또는 Al-염은 금속 이온과 MPs 사이의 정전기 상호 작용을 갖는 응집제로 사용되지만 응집제 농도가 높은 경우에도 제거 효율이 40% 미만이다. 본 논문에서는 단시간에 MPs 크기에 독립적인 제거효율 향상을 위해 금속-페놀 배위결합을 응집법으로 새롭게 적용했다. 식물유래 페놀분자를 이용하여 금속페놀에서 형성되는 강한 결합인 배위결합을 응고에 사용했다. 탄닌산 (TA)과 갈산 (GA)은 페놀 분자로 MBs의 표면을 페놀성으로 변경했다. 페놀성 표면을 가진 MBs는 Fe3+와의 계면에서 배위 결합을 형성했다. 변형된 0.5 μm 크기의 폴리스티렌 (PS) 비드의 제거 효율은 다양한 조건에서 5분 이내에 95% 이상이었다. 이는 기존 응고 방법의 2배다. 또한, 응고된 MBs는 5분 내 소량의 응고제와 배위결합에 의해 형성되었다. MPs는 대부분의 동물 장에 축적되기 때문에 MBs를 마우스의 장 IEC18 세포에서 위험 평가와 마우스의 간, 신장 및 장의 위험 평가 및 생체 분포를 평가하는 데 사용했다. 세포 실험에서 산화 스트레스와 염증성 사이토카인 수치는 PS 비드의 농도에 의해 증가했다. 그러나 응고 기반 정제수는 PS 비드가 없는 물과 비교하여 유사한 수준을 나타냈다. 동물실험에서 2주 동안 PS 비드를 경구투여로 노출된 ICR 마우스를 분석했다. PS 비드는 간, 신장, 장에서 검출되었으나 PS 비드의 축적은 장에서 가장 높았다. 활성산소종 (ROS), 슈퍼옥사이드 디스뮤타제 (SOD), 염증 반응 및 사이토카인 수준이 PS 비드에 노출된 간, 신장 및 장에서 증가했습니다. 그러나, 비히클 처리군과 비교하여 응고 기반 정제수에서 유사한 염증 수준을 나타냈다. MPs의 표면 개질에는 키토산과 탄닌산이 결합된 TA-CS를 이용해 단일 단계로 처리 시간을 단축했다. TA-CS를 사용하여 표면 개질된 90-125 μm 크기의 PS/폴리에틸렌 (PE)/폴리(메틸메타크릴레이트) (PMMA) 비드에서 제거 효율은 80% 이상이었다. 동일한 농도의 PS/PE/PMMA 비드는 IEC 18 세포에서 다른 수준의 산화 스트레스와 염증성 사이토카인을 나타냈지만 응고 기반 정제수는 더 낮은 수준이었다.
Microplastics (MPs) has distributed in air, oceans and soil worldwide. The harmful effects of environmentally exposed MPs on the environments and potential human health has been increasing. In general, for removal of MPs, three methods have been used: filtration, biological degradation, and coagulation (a process of combining MPs into larger coagulates). Of these methods, filtration is mostly used, but the MPs removal efficiency depends on the pore size of the filter or the size of the coagulated MPs. Although biological degradation method has an eco-friendly, disadvantage that MPs degradation 5% weight loss for 4 weeks. Fe- or Al-salts are used as coagulants with electrostatic interaction between metal ions and MPs, but their removal efficiency is less than 40% at high concentration of the coagulants. In this thesis, to improve the removal efficiency and MPs size independent removal efficiency in a short time, the metal-phenol coordination bond was newly utilized for the coagulation method. Many studies have used commercially available microbeads (MBs) as model of MPs, so MBs were also used in this study. In addition, coordination bond, which is a strong bond formed by metalphenol using plant-derived phenol molecules, was used for coagulation. Tannic acid (TA) and gallic acid (GA) modified surface of MBs with phenolic molecules. MBs with a phenolic surface form coordination bond at the interface with Fe3+. The removal efficiency of modified 0.5 μm-sized polystyrene (PS) beads was over 95 % within 5 min in various conditions. This removal efficiency was twice as high as that of the commonly used coagulation method. In addition, coagulated MBs was formed by coordination bonds with a small amount of coagulant within 5 min. Since MPs accumulate in most animal intestines, MBs were used to evaluate risk assessments in the intestinal IEC18 cells of mice and risk assessments and biodistribution in the liver, kidney, and intestine of mice. In vitro, oxidative stress and inflammatory cytokine levels increased as the concentration of PS beads increased. However, similar levels were showed in the coagulation-based purified water compared to water without PS beads. In vivo, ICR mice orally exposed to PS beads for 2 weeks were analyzed. PS beads were detected in the liver, kidney, and intestine, but the accumulation of PS beads was highest in the intestine. Reactive oxygen species (ROS), superoxide dismutase (SOD), inflammatory response and cytokines levels increased in the liver, kidney and intestine exposed to PS beads. However, similar inflammatory levels were showed in the coagulation-based purified water compared to the vehicle treatment group. These results additionally confirm the efficacy of water purification using the phenolic-mediated coagulation removal technique. In the surface modification of MPs, TA-CS was used in which chitosan and tannic acid were conjugated to reduce the processing time in a single step. Using TA-CS, the removal efficiency was more than 80% in the surface-modified 90-125 μm-sized PS/polyethylene (PE)/poly(methyl methacrylate) (PMMA) beads. PS/PE/PMMA beads at the same concentration showed different levels of oxidative stress and inflammatory cytokines in IEC 18 cells, but coagulation-based purified water showed lower levels. In conclusion, regardless of the type and size of MPs, phenolic-modified MPs were coagulated by coordination bonds within 5 min with a small amount of coagulant, and high removal efficiency.
Ⅰ. INTRODUCTION 11.Microplastics (MPs) 11.1. Definition, classifications, and types of MPs 11.2. Environmental and human health risk exposed MPs 52. Overview of MPs removal technologies 92.1. Introduction of MPs removal technologies 92.2. Biological degradation 112.3. Filtration using membranes 132.4. Electro/chemical coagulation 153. Bioinspired coagulation using coordination bonds 203.1. Coordination bonds between metal and phenolic molecules 203.2. Coordination bonds-based complexation 224. Risk assessments of MPs 254.1. In vitro studies for risk assessments 254.2. In vivo studies for risk assessments 275. The objective of this thesis 33Ⅱ. EXPERIMENTAL SECTION 361. Two steps-surface modification of MPs 361.1. Formation of coordination bonds-based complex 361.2. Surface modification of polystyrene (PS) or polyethylene (PE) beads 361.2.1. Using chitosan (CS) and tannic acid (TA)/gallic acid (GA) 361.2.2. Using poly(diallyldimethylammonium chloride) (PDADMAC) and TA/GA 371.3. Coagulation of PS/PE beads and filtration of coagulated beads 371.4. In vitro studies for risk assessments 381.4.1. Cell viabilities 381.4.2. Detection of intracellular reactive oxygen species (ROS) level 391.4.3. Western blotting 391.4.4. Reverse Transcription Polymerase Chain Reaction (RT-qPCR) analysis 401.4.5. Statistical analysis 411.5. In vivo studies for risk assessments 411.5.1. Animal study 411.5.2. Biodistribution of PS beads in liver, kidney and intestine of mice 421.5.3. Serum biochemical analysis 431.5.4. Histopathological analysis 441.5.5.Western blotting analysis 441.5.6. RT-qPCR analysis 451.5.7. Analysis of superoxide dismutase (SOD) activity 461.5.8. Analysis of ROS level 471.5.9. Statistical analysis 472. Single step-surface modification of MPs 482.1. TA-CS conjugates 482.2. Characterizations of TA-CS 482.3. Surface modification of microbeads (MBs) using TA-CS 492.4. Coagulation of beads and filtration of coagulated beads 492.5. In vitro studies for risk assessments 502.5.1. Cell viabilities 502.5.2. Detection of intracellular ROS level 512.5.3. Western blotting 512.5.4. RT-qPCR analysis 522.5.5. Statistical analysis 53Ⅲ. RESULTS AND DISCUSSION 541. Two steps-surface modification of MPs 541.1. Identification of coordination bonds in coordination complex 541.2. Characterizations of surface modification 561.2.1. Surface modification of beads using CS and TA/GA 561.2.2. Surface modification of beads using PDADMAC and TA/GA 641.3. MPs Removal efficiency 661.3.1. Surface modification of beads using CS and TA/GA 661.3.2. Surface modification of beads using PDADMAC and TA/GA 721.4. Risk assessments of PS beads by concentration in vitro 741.5. Biodistribution, toxicity, ROS, SOD and inflammatory responses in vivo 761.5.1. Accumulation and toxicity of PS beads in the liver, kidney, and intestine 761.5.2. Effects of PS beads on the inflammatory and ROS in liver 791.5.3. Effects of PS beads on the inflammatory and ROS in kidney 821.5.4. Effects of PS beads on the inflammatory and ROS in intestine 852. Single step-surface modification of MPs 882.1. Characterizations of TA-CS 882.2. Surface modification of beads using TA-CS 912.3. Removal efficiency of PS/PE/Poly(methyl methacrylate) (PMMA) beads 942.4. Risk assessments of PS/PE/PMMA beads in vitro 98Ⅳ. CONCLUSION 100Ⅴ. REFERENCES 102Abstract (In Korean) 119Curriculum Vitae 121Acknowledgement 124