Light weight partitions in modern society have been used to raise the profit of users and the utilization of spaces while dividing spaces or expanding a building within the fire compartment. However, illegal expansion or remodeling uses cheap partitions resulting in the loss of human life and property damage if fire breaks out. Accordingly, the present thesis selected Gypsum board F(GB-F), Gypsum board G(GB-G), plywood, and marble for a single wall specimen and stud partition, SGP partition, sandwich panel, urethane foam panel, and glass wool panel for a complex wall specimen. Heating temperatures were set from 100 ℃ to 600 ℃ to apply them for 1,800 seconds and to measure the temperatures of the back sides and the conduction heat transfer rate. Two miniatures for ISO 9705 2/5 were produced and divided by a partition to proceed with the test according to ISO 9705 standards. The analysis was conducted for the possibility of fire on the back side by the conduction heat transfer rate, the risk of fire spreading to the horizontal structure, and the pattern of wall carbonization which is generated by the collapse of wall. Additionally, through the ''ED-XRF'', the qualitative and quantitative analyses have been conducted for the components of wall steel plates according to heating temperature. From the measurement result of the conduction heat transfer rate for the single wall specimen, when the heating temperature was applied with 600 ℃, it appeared 1.27 times higher in the Gypsum board F(GB-F), 1.42 times higher in the Gypsum board G(GB-G), 25.16 times higher in the marble, and 47.70 times higher in the heat resistance glass in reference to the plywood with the lowest conduction heat transfer rate. From the measurement result of conduction heat transfer rate for the single wall specimen, when the heating temperature was applied with 500 ℃, it appeared 2.58 times higher in the urethane foam panel, 3.08 times higher in the stud partition, 3.3 times higher in the SGP partition, and 24.54 times higher in the sandwich panel in reference to the glass wool panel with the lowest conduction heat transfer rate. From the measurement result of the experiment in the actual fire on the ISO 9705 2/5 miniatures, in stud partition, SGP partition, and glass wool partition, no change occurred on the back side but in the tempered glass, sandwich panel, and urethane foam panel, carbonization occurred on the wall paper of back side due to the collapse of the wall. In the sandwich panel and urethane foam panel, it showed the highest floor heat flux due to the explosion of flammable gas generated by the fusion of inner core material. It showed that if fire actually breaks out in a closed space, there exists the high possibility of fire spreading to nearby compartments due to the conduction heat transfer rate and explosion. From the measurement results of the change in the components of oxidized steel plate after the non water injection and oxidized steel plate after water injection according to heating temperature, the component ratio was decreased by the fusion of elements retained by the steel plates. By the increase in the component ratio of Fe with a high melting point, it was possible to predict the heating temperature. From the confirmation result of a risk of fire spreading by inner material due to conduction heat, it was possible to confirm the details and risks through actual fire experiments, which were not possible to check in the assessment on the risk of fire by inner material due to radiant heat. If various research and data can be secured for the equipment ED-XRF, it is expected to contribute to the development of fire investigation technique.
Ⅰ. 서 론 151. 연구 배경 및 목적 152. 연구의 방법 및 범위 19Ⅱ. 이론적 배경 211. 연구 동향 21가. 국내 내장재 및 패널 화재 위험성 평가 동향 21나. 국내 수직구조의 화재 확산 연구 동향 25다. 국외 내장재 및 패널 화재 위험성 평가 동향 272. KS F ISO 9705 303. 화재사례 32가. 의정부 아파트 화재 사고(대봉 그린아파트 화재 사고) 32나. 제천스포츠센터 화재 33다. 밀양 병원 화재 34라. 경기도 안성 냉장창고 화재 354. 화재조사의 개념 36가. 화재 패턴분석 365. X-선 형광(X-Ray Fluorescence, XRF) 분석 44가. 특성 X-선 발생 원리 44나. X선 형광 분석 장치의 기본 구성 45다. ED-XRF(Energy Dispersive X-Ray Fluorescence) 46Ⅲ. 수열 온도에 따른 벽체 시료의 이면부 온도 및 열전달률 481. 실험 방법 및 조건 48가. 소규모 단일 벽체 실험 48나. 소규모 복합 벽체 실험 54다. ISO 9705 2/5 축소모형 실험 602. 수열 온도에 따른 소규모 실험 결과 64가. 단일 벽체 시료의 이면부 온도 64나. 단일 벽체 시료의 이면부 열전달률 69다. 복합 벽체 시료의 이면부 온도 83라. 복합 벽체 시료의 이면부 열전달률 893. ISO 9705 2/5 축소모형 실험 결과 103가. 벽체 시료의 이면부 온도 103나. 벽체 시료의 탄화 패턴 1154. 실험 결과 및 고찰 127가. 단일 벽체 시료의 이면부 온도 및 열전달률 127나. 복합 벽체 시료의 이면부 온도 및 열전달률 136다. 벽체 시료의 이면부 온도 및 탄화 패턴 143Ⅳ. 수열 온도 및 발화원에 따른 수열 부위 성분 변화 1451. 실험 방법 및 조건 145가. 수열 온도에 따른 강판의 성분 변화 실험 1452. 수열 온도에 따른 강판의 탄화 패턴 및 성분 변화 149가. 비주수 후 산화한 강판의 탄화 패턴 및 성분 변화 149나. 주수 후 산화한 강판의 탄화 패턴 및 성분 변화 1583. 실험 결과 및 고찰 168가. 비주수 후 산화한 강판의 탄화 패턴 및 성분 변화 168나. 주수 후 산화한 강판의 탄화 패턴 및 성분 변화 170V. 결 론 174참 고 문 헌 177ABSTRACT 185