메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

양서원 (한국해양대학교, 한국해양대학교 대학원)

지도교수
조종래
발행연도
2022
저작권
한국해양대학교 논문은 저작권에 의해 보호받습니다.

이용수11

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The International Maritime Organization has tightened emission regulations on ships due to the problem of air environmental pollution. Accordingly, since the demand for eco-friendly LNG propulsion ships is increasing, the development and stabilization of various equipment technologies are required. LNG can be cooled to -165°C for transportation and storage, and then stored to a tank by high pressure liquid state. And it is vaporized into a high-pressure gaseous state of -30℃ and supplied to the engine through a high-pressure vaporizer. At this time, the high-pressure vaporizer has a large temperature difference between the inside and outside, as well as the inlet and outlet, so thermal characteristic analysis and structural design must be performed in consideration of thermal deformation.
In this paper, the structural integrity of the high-pressure vaporizer was evaluated under the design and operating conditions through finite element analysis. The integrity evaluation results based on ASME B&PV Section Ⅷ Div. 2 was confirmed to be within the allowable limit in the design conditions of the high-pressure vaporizer and it was confirmed that the cycle required by the manufacturer was satisfied by calculating the usable fatigue life cycle under the operating conditions. Additionally, the optimal design improvement was presented by comparing and analyzing the effects of the thickness of the partition plate, the change of head shape, and the rearrangement of the central hole of the tube sheet.
The tube sheet of the high-pressure vaporizer is in the form of a perforated plate because it combines with about 2,500 tubes to vaporize by increasing the temperature of LNG. However, since the number of elements and nodes increase to implement as a finite element model, there was a problem of efficiency in analysis. Therefore, equivalent material properties were calculated and applied to the tube sheet according to the ligament efficiency of ASME B&PV Section Ⅷ Div. 2, while the analysis result of the entire equivalent model and the perforated & equivalent mixed model were compared to ensure the reliability of the equivalent material properties.

목차

1. 서론 1
1.1 연구 배경 1
1.2 연구 내용 및 목적 3
2. 이론적 배경 4
2.1 응력과 변형률의 관계 4
2.2 다공판의 등가 모델링 6
2.2.1 리가먼트 효율 6
2.2.2 등가 탄성계수 7
2.2.3 등가 포아송비 9
3. 설계 하중에 의한 고압 기화기의 구조 건전성 평가 11
3.1 재료 물성치 11
3.2 등가 모델의 구조해석 13
3.2.1 유한요소 모델링 13
3.2.2 하중 및 경계조건 16
3.2.3 해석 결과 및 평가 18
3.3 다공 및 등가 혼합 모델의 구조해석 21
3.3.1 유한요소 모델링 21
3.3.2 하중 및 경계조건 24
3.3.3 해석 결과 및 평가 26
3.4 해석 결과 비교 분석 29
4. 운전 하중에 의한 고압 기화기의 구조 건전성 평가 30
4.1 재료 물성치 30
4.2 하중 및 경계조건 32
4.3 해석 결과 및 분석 34
4.4 피로 수명 계산 39
4.5 설계 개선 44
4.5.1 분리판의 두께에 따른 영향 44
4.5.2 헤드 형상 변경에 따른 영향 47
4.5.3 튜브 시트 중심부 홀의 재배치에 따른 영향 50
5. 결론 52
참고문헌 54

최근 본 자료

전체보기

댓글(0)

0