메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

장성철 (부경대학교, 부경대학교 대학원)

지도교수
윤한삼
발행연도
2022
저작권
부경대학교 논문은 저작권에 의해 보호받습니다.

이용수11

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study is a basic study on the analysis of the flow field surrounding the bubble curtain induced by releasing the air bubble underwater, the generation of the circular circulation mechanism, and the wave energy attenuation effect of induced artificial flow. To achieve the presented purpose, this study focused on the following two main contents. First, the formation and artificial flow characteristics induced by air bubbles were quantitatively evaluated according to air source depth and airflow rate as installation parameters of the bubble curtain. Then, major forming factors and hydraulic characteristic factors were derived. Second, the wave energy attenuation performance of the pneumatic breakwater was evaluated through a two-dimensional wave hydraulic model experiment and numerical analysis modeling. Then, a correlation analysis was performed between the wave field and the induced artificial flow among the external forces that should be considered the most when applying the marine environment. Finally, the relationship between the installation parameters of the bubble curtain and the wave energy attenuation performance was quantitatively established. The results of this study are summarized as follows.
1) The numerical analysis model was established to analyze the bubble curtain induced by releasing air bubbles underwater. Two-way coupling was considered for motion reproduction between gas-liquid phases in model construction, and the multiphase flow was treated with the relative velocity for a single-phase mixture according to air aeration. To analyze the dispersion effect of the turbulence field caused by the release of air bubbles underwater, the RNG k-e turbulence model was applied to construct a numerical analysis model that can economically simulate multiphase flow accompanied by strong turbulent flow.
2) Forming factors according to installation parameters were considered in relation to the formation of the bubble curtain induced by the release of air bubbles through the constructed numerical analysis model. Forming factors were developed and presented based on the results of this study to deal with the very complex phenomenon induced by the release of air bubbles underwater in a simple and engineering.
3) To analyze the flow characteristics induced by the bubble curtain in an engineering analysis method, hydraulic characteristic factors of the flow field were derived using the PIV hydraulic model experiment and numerical analysis model. For theoretical establishment of hydraulic characteristic factors, the theoretical equations were organized and presented, focusing on the characteristics of artificial flow induced by generating the bubble curtain underwater.
4) In the experiment and numerical analysis model results, the effect on the wave energy attenuation of the pneumatic breakwater was clearly confirmed, and the wave interacted with the bubble curtain and the surface wave energy dissipation occurred around the pneumatic breakwater.
5) The wave energy attenuation performance of a pneumatic breakwater is closely related to the period of the incident wave and airflow rate. As the airflow rate increased, the wave energy attenuation rate increased. For long period incident waves(), the bubble curtain has little effect on the propagating waves.
6) The scale effect was estimated through a dimensionless comparison of the wave energy attenuation performance of the pneumatic breakwater. In addition, a relational expression for deriving the airflow rate condition when the bubble curtain is used for attenuating wave energy is presented.

목차

1. 서 론 1
1.1 연구 배경 1
1.1.1 기포장막의 다양한 활용 분야 1
1.1.2 기포장막의 제반 물리 현상 9
1.2 선행연구 고찰 13
1.3 연구 목적 및 내용 20
2. 기포장막 형성 및 유동 특성의 이론적 고찰 24
2.1 개설 24
2.2 기포장막의 형성 인자 25
2.2.1 기포 연행 가설 27
2.2.2 기포 코어 비 29
2.2.3 중심선 속도 및 형성 폭 31
2.3 기포장막의 유동 특성 인자 35
2.3.1 최대 수평 유속 및 유속 영향 깊이 36
2.3.2 표면 흐름 37
2.3.3 정체선(Stagnation line) 38
2.3.4 원거리 유동 특성 39
2.4 기포장막의 표면파 에너지 감쇠 44
2.4.1 기포장막의 파 에너지 감쇠 개념 45
2.4.2 표면파 감쇠 기구 47
2.5 결언 52
3. 전산유체역학을 이용한 기포장막의 수리특성 53
3.1 개설 53
3.2 전산유체역학(CFD) 수치해석 모델의 개요 54
3.2.1 지배방정식 59
3.2.2 난류 해석 63
3.2.3 공기 혼입 및 Drift-flux 모델 66
3.2.4 격자 선정 및 수치해석 모델 구축 71
3.3 수치해석 모델의 민감도 분석 75
3.3.1 공기 혼입 및 Drift-flux 모델 민감도 77
3.3.2 난류 모델 민감도 84
3.4 최적 수치해석 모델 구축 87
3.5 결언 89
4. 기포장막의 원형 순환 및 유동 특성 90
4.1 개설 90
4.2 Particle Image Velocimetry (PIV) 수리 모형 실험 91
4.2.1 PIV 실험 모형 구축 91
4.2.2 PIV를 이용한 기포장막 주변 유동 특성 분석 99
4.3 기포장막 형성 기구의 CFD 해석 109
4.3.1 수중 기포장막의 재현 109
4.3.2 기포장막의 형성 기구 특성 분석 113
4.4 기포장막 원형 순환 특성의 CFD 해석 120
4.4.1 최대 수평 유속 및 영향 깊이 120
4.4.2 표면 흐름 특성 126
4.4.3 정체선(Stagnation line) 및 원거리 유동 특성 130
4.5 결언 137
5. 기포장막의 표면파 감쇠 및 수리특성 139
5.1 개설 139
5.2 2차원 조파 수리 모형 실험 141
5.2.1 조파 수리 모형 실험 구축 141
5.2.2 수면 파형 분석 방법 145
5.2.3 기포장막의 표면파 감쇠 실험 결과 149
5.3 기포장막의 파 에너지 감쇠 수치해석 159
5.3.1 CFD 수치해석 159
5.3.2 파 에너지 감쇠 성능 평가를 위한 CFD 실험안 170
5.3.3 진행파와 인공 흐름간의 상호작용 173
5.3.4 파 에너지 감쇠 성능의 선행 연구와의 비교 182
5.3.5 입사파 주기의 영향 184
5.3.6 공기방출량에 따른 영향 190
5.3.7 공압 방파제의 파 에너지 감쇠 성능에 대한 무차원 비교 195
5.4 결언 199
6. 요약 및 결론 201
참고문헌 206

최근 본 자료

전체보기

댓글(0)

0