메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김인아 (부경대학교, 부경대학교 대학원)

지도교수
정석권
발행연도
2022
저작권
부경대학교 논문은 저작권에 의해 보호받습니다.

이용수18

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Variable speed refrigeration system (VSRS) with a variable speed drive is widely used in industry because of its quick reaction capability over a wide range of heat load variations, energy-saving performance, and high precision temperature control ability. The VSRS consists of a variable speed compressor, an electronic expansion valve (EEV), and heat exchangers. Specifically, it is interconnected by long pipes, resulting in dead times and frequent heat access through exposed pipes. Therefore, it has strong inherent nonlinear characteristics, such as time delay in the operational ranges. Thus, it is difficult to perform linear approximation modeling for VSRS and accurate control.
The dynamic model mainly uses a low-dimensional transfer function model obtained through experiments, to design a controller for VSRS. Low-dimensional transfer function model is easily obtained by experiments near the operating point. However, in practical operation, perturbation occurs due to changes in ambient temperature and operating point that are different from those during modeling. Therefore, a robust controller against the model uncertainty and disturbance is essential for accurate temperature control because VSRS is affected by heat load, i.e., disturbance.
Applying a model-based robust control with robustness to disturbance and model uncertainty for VSRS control is desirable. H-inf control is widely known as a model-based representative robust control method. H-inf control treats various uncertainties in the form of unstructured perturbation to a nominal model. However, the H-inf theory becomes somewhat conservative when the model uncertainty becomes highly structured. On the other hand, The μ-synthesis control (μ-controller) has been applied to improve the aforementioned problems of the . The μ-controller can be made less conservative than by considering the structure of the model uncertainty. The μ-synthesis controller treats model uncertainty as structured perturbation; it is designed using structured singular value. The μ-control simultaneously solves the robust stability and robust control performance (robust performance) problem by designing an optimal controller for structured uncertainty. Therefore, μ-controller is a control technique that allows the direct inclusion of modeling errors or uncertainties, measurement noises, disturbances, and performance requirements into a common formulation. Despite its advantages, there are only a few research papers on μ-synthesis controller that apply μ-controller to VSRS control. However, those studies did not optimize the weighting functions, which are crucial design parameters; moreover, some of those have not been experimentally verified. Furthermore, it is difficult to find servo control of μ-synthesis for accurate temperature control.
This paper introduces simulated annealing (SA) algorithm?a metaheuristic approach?to solve this problem. SA is an optimization technique that simulates an annealing process in which molecules of a high temperature substance are gradually cooled down to reach the lowest energy state. Parameters were selected to ensure robust stability and robust performance against the model uncertainty and disturbance by simultaneously optimizing the weighting functions using SA.
The μ-controller that satisfies robust stability and robust performance for VSRS was formulated as a mixed sensitivity problem using frequency weighting functions, where the weighting functions were optimized via SA. The validity of the designed μ-controller was confirmed through simulations and experiments for a VSRS-based oil cooler system. Moreover, its effectiveness was verified through performance comparison with the PI controller.

목차

제1장 서 론 1
1.1 연구 배경 및 목적 1
1.2 연구 범위 및 내용 3
제2장 가변속 냉동시스템의 온도 제어 5
2.1 가변속 냉동시스템의 구성 및 제어 5
2.2 실험 장치 구성 및 사양 7
2.3 견실 제어의 필요성 및 μ-synthesis 견실 제어 9
제3장 가변속 냉동시스템의 모델링 13
3.1 최적 과열도 및 정격 열부하 선정 13
3.2 동특성 실험을 통한 전달함수 모델링 14
3.2.1 압축기 회전수 변화에 따른 오일출구온도의 동특성 15
3.2.2 EEV 개도 변화에 따른 과열도의 동특성 17
3.2.3 열부하 변화에 따른 오일출구온도의 동특성 18
3.2.4 압축기 회전수 변화에 따른 과열도의 동특성 19
3.3 모델 불확실성을 포함한 전달함수 20
제4장 가변속 냉동시스템의 μ-synthesis 제어기 설계 23
4.1 μ-synthesis 견실 제어 이론 23
4.2 가변속 냉동시스템의 μ-synthesis 제어기 설계 25
4.3 견실성 비교평가를 위한 PI 제어기 설계 33
4.4 시뮬레이션 결과 비교 및 성능 평가 34
4.5 실험 결과 비교 및 성능 평가 36
제5장 서보형 μ-제어기 설계 및 파라미터 최적화 42
5.1 μ-synthesis의 견실 서보 제어기 설계 42
5.2 가중함수의 파라미터 최적화를 위한 SA 알고리즘 45
5.3 SA를 통한 최적 μ-synthesis의 서보 제어기 설계 47
5.4 견실성 평가를 위한 최적의 PI 제어기 설계 52
5.5 시뮬레이션 결과 비교 및 성능 평가 53
5.6 실험 결과 비교 및 성능 평가 57
제6장 결 론 61
참고문헌 62
Appendix 64
학술지 게재 논문 및 학술대회 발표 논문 목록 85

최근 본 자료

전체보기

댓글(0)

0