메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이경민 (충남대학교, 忠南大學校 大學院)

지도교수
이규철
발행연도
2021
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Meter Data Management System(MDMS) is an integrated system that manages electricity data such as electricity generation, transmission, and consumption in real time. Often, complex and varied queries with multiple join and selection operations need to be run on such data. Several studies have focused on improving the performance of query evaluation for such data by applying machine learning techniques to query optimization problems. However, these studies are limited to processing queries for data in a single environment. In this paper, we propose two types of Proximal Policy Optimization (PPO)-based join order optimization model on Spark SQL to improve the performance of retrieval of large amounts of data.
The first PPO-based model uses cost as a reward. This model using cost adopts the cost computation method of Spark SQL to train with the costs of the join plans generated by the model as rewards. The model can find more join plans with lower costs than the plans that Spark SQL finds because Spark SQL is limited to a low search space. We demonstrate that the proposed PPO-based optimization model generates join plans with similar or lower costs than Spark SQL without executing the optimization algorithm of Spark SQL. However, because the cost computation method of Spark SQL that first model utilizes estimates the join plans using the statistics of input tables, it can be inaccurate. So, we propose a second model that uses more accurate metric. The second PPO-based model uses actual execution time as a reward. This model is trained with the execution time of the join plans generated by the model as rewards. This model can find join plans that take less time than Spark SQL. We use the actual execution time to make the model more accurate than the first model. We demonstrate that the second proposed PPO-based model generates join plans with similar or less execution times than Spark SQL.

목차

제 1 장 서 론 1
1.1 연구 배경 및 목적 1
1.2 논문 구성 10
제 2 장 관련 연구 11
2.1 DEEP REINFORCEMENT LEARNING FOR JOIN ORDER ENUMERATION 11
2.2 TOWARDS A HANDS-FREE QUERY OPTIMIZER THROUGH DEEP LEARNING 13
2.3 LEARNING STATE REPRESENTATIONS FOR QUERY OPTIMIZATION WITH DEEP REINFORCEMENT LEARNING 15
2.4 LEARNING TO OPTIMIZE JOIN QUERIES WITH DEEP REINFORCEMENT LEARNING 16
2.5 본 연구의 차별성 17
제 3 장 SPARK SQL 쿼리 최적화 분석 18
3.1 APACHE SPARK 18
3.2 SPARK SQL 19
3.3 SPARK SQL 조인 순서 최적화 25
제 4 장 PPO 기반 SPARK SQL 조인 순서 최적화 27
4.1 강화 학습 환경 구성 27
4.2 SPARK SQL 비용 기반 최적화 모델 구현 33
4.3 SPARK SQL 실행 시간 기반 최적화 모델 구현 37
제 5 장 성능 평가 40
5.1 성능 평가 환경 40
5.2 비용 기반 조인 순서 최적화 45
5.3 실행 시간 기반 조인 순서 최적화 50
제 6 장 결론 및 향후 연구 57
참고 문헌 59
부 록 60
ABSTRACT 72
감사의 글 74

최근 본 자료

전체보기

댓글(0)

0