메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

조경인 (경북대학교, 경북대학교대학원)

지도교수
김영민
발행연도
2021
저작권
경북대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this work, various statistical learning methods are utilized to examine the performance changes of the bankruptcy prediction model over time. This study is conducted on companies listed on the Korea Exchange(KRX) from January 1, 2000 to January 31, 2016, and the bankrupted enterprises are companies that request for delisting or workout.We consider accounting variables indicating the potential growth of the company and the Index of All Industrial Productions (IAIP) as macroeconomic variable. Additional market variables are chosen based on Market Capitalization of each company; Variability, Skewness, and Kurtosis. Let the years during the January 2000?January 2016 period be a seqence of times. Then, we compose some pairs of train and test data. First three years are designated as training data, and the consequent next one year is set as testing data. For each three-one pair trial, we predict the bankruptcy of the enterprise and conduct a series of tests on all trials. For example, we take train data for 2000-2002 and test data for 2003 for the analysis. This process is repeatedly carried out. Using Logistic Regression, Partial Least Squares (PLS), and Random Forest, the final model is selected by comparing the recall, a measure of classification performance evaluation. Logistic Regression and Random Forest assign weights on bankruptcy companies due to imbalance of the bankruptcy data. Hence, to overcome the fact that the Partial Least Squares method is impossible to utilize weights itself, we accept the Synthetic Minority Oversampling Techniques (SMOTE) to consider the data properties. Consequently, the result reveals that accounting variables and IAIP indirectly affects on the bankruptcy, and the random forest model, non-statistical learning methods, demonstrates more significant results than other methods in a series of tests.

목차

1 서론 1
2 통계적 분석방법론 4
2.1 로지스틱 회귀(Logistic Regression) 4
2.1.1 라쏘를 활용한 변수선택법(Lasso variable Selection) 4
2.1.2 로지스틱 회귀(Logistic Regression) 5
2.2 랜덤포레스트(Random Forest) 6
2.3 부분최소제곱(Partial Least Square) 11
2.3.1 synthetic minority oversampling technique;SMOTE 11
2.3.2 부분최소제곱(Partial Least Square) 11
3 기업부도의 예측을 위한 자료 설명 15
3.1 변수 설명 15
3.2 기초데이터분석 18
3.3 상관관계 분석 21
4 모형추정 23
4.1 분석과정 23
4.2 분석결과 25
5 결론 및 제언 38
6 부록 39
References 47

최근 본 자료

전체보기

댓글(0)

0