메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

박영균 (조선대학교, 조선대학교 대학원)

지도교수
성윤경
발행연도
2021
저작권
조선대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this paper, Input Shaper Command using Artifitial Neural Network was developed to control residual deflection when hoisting motion of the system occurs. Input Shaping technology has been applied to various industrial sites and flexible systems, but it is senisitive to modeling errors and is forced to move vertically, and there are problems of increasing working time and reducing efficiency. In addition, since the safety of workers is important, residual deflection should be small even in situations where movement in the hoisting direction occurs. Therefore, it is necessary to develop an input shaping command with less residual deflection even when modeling errors occur.
First, the input shaping commands with arfitifial neural network was analyzed when the actual flexble system contains non-linearity. A network using modeling dynamics for the Double-Pendulum System and a tow-mode input shaping command was propased. In addition, a network that can be applied to the operation of the Tower Crane has been developed using a nonlinear shaper.
Network’s training algorithm used to global optimal PSO algorithm, and the performance index was evaluated. It uses a new input shaper and compares it with a shaper that has secured robustness over a wide frequency range. The simulation was divided into large-scale and mini-scale, and experimentally evaluated and verified with a mini-scale system.

목차

LIST OF TABLES Ⅴ
LIST OF FIGURES Ⅸ
ABSTRACT Ⅹ
제 1 장 서 론 1
1.1 연구 배경 및 필요성 1
1.2 이론적 배경 2
1.2.1 Input Shaping Technique 2
1.2.1.1. Zero Vibration(ZV) Shaper 5
1.2.1.2. Zero Vibration Derivative(ZVD) Shaper 5
1.2.1.3. Unit Magnitude Zero Vibration(UMZV) Shaper 6
1.2.1.4. Input Shaper 성능비교 7
1.2.2. Particle Swarm Optimization(PSO) Algorithm 9
1.3 논문의 진행방향 10
제 2 장 비선형 System에 대한 Neural Network Input Shaper의 분석 11
2.1 서론 12
2.2 Nonlinear System Input Shaper 13
2.2.1. System modeling 14
2.2.2. 가속도 제한을 고려한 Input Shaper 14
2.2.3. 구동기의 비선형 동적 특성을 고려한 Input Shaper 16
2.3 Neural Network Approach 18
2.3.1. Neural Network Configuration 19
2.3.2. Neural Network Training 21
2.4 Shaper 성능 평가 24
2.4.1. 가속도 제한 Shaper 시뮬레이션 25
2.4.2. 1st-order Shaper 시뮬레이션 28
2.5 실험적 검증 31
2.5.1. 가속도 제한 Shaper의 실험적 검증 32
2.5.2. 1st-order Shaper의 실험적 검증 35
2.6 결론 37
제 3 장 Double Pendulum System에 대한 Neural Network Input Shaper의 개발 39
3.1 서론 40
3.2 Double-Pendulum System Input Shaper 41
3.2.1. System modeling 42
3.2.2. Two-Mode Input Shaper 44
3.3 Neural Network Approach 45
3.3.1. Neural Network Configuration 46
3.3.2. Neural Network Training 47
3.4 Shaper 성능 평가 51
3.5 실험적 검증 54
3.6 결론 58
제 4 장 Tower Crane의 비선형에 대한 Neural Network Input Shaper의 개발 59
4.1 서론 60
4.2 Nonlinear Tower Crane System Input shaper 61
4.2.1. System modeling 62
4.2.2. 1차 구동기의 비선형성을 고려한 Input Shaper 64
4.3 Neural Network Approach 66
4.3.1. Neural Network Configuration 67
4.2.2. Neural Network Training 68
4.4 Shaper 성능 평가 72
4.5 실험적 검증 75
4.6 결론 79
제 5 장 결론 및 향후 연구방향 81
참 고 문 헌 82

최근 본 자료

전체보기

댓글(0)

0