메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

한중기 (세명대학교, 세명대학교 대학원)

지도교수
하동명
발행연도
2021
저작권
세명대학교 논문은 저작권에 의해 보호받습니다.

이용수14

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
반도체 산업은 첨단산업, 정밀산업, 청정산업으로 대중에게 알려져 있으나, 그 이면에는 다양한 가스, 케미컬 등 화학물질이 사용되고 있어, 반도체 산업과 화학공장은 화학물질로 인한 화재, 폭발, 누출 등의 위험이 잠재되어 있다. 반도체 공정 중 흔히 사용되는 신너, IPA(Isopropyl alcohol), 스트리퍼, 현상액, 감광액 등은 대부분 인화성 물질로서 공정 중 장비의 과열, 누설, 취급 부주의로 인한 작은 발화원 노출 시에도 쉽게 화재가 발생할 수 있다.
본 연구에서는 반도체 산업현장에서 제조 공정에서 용매로 가장 많이 사용되고 있는 신너인 PGMEA(Propylene glycol monomethyl ether acetate)와 세정공정에서 사용하고 있는 IPA를 혼합물 조성평가(부피비) 대상으로 선정하여, STANHOPE-SETA사의 Setaflash Series 8 Active Cool 장치를 사용하여 PGMEA와 IPA 순수물질과 혼합물의 인화점을 측정하였으며, 측정된 인화점과 화학양론, 구성 원소수를 활용하여 순수물질의 폭발한계를 계산하였으며, 혼합물의 폭발한계는 Le Chatelier의 법칙을 사용하여 계산하였다.
AND사의 진동식점도계 장치인 SV-10장치를 사용하여 순수물질 및 혼합물의 점도를 측정하였으며, 측정된 점도를 활용하여 조성변화에 따른 점도의 예측 모델을 제시하였다.
ASTM E659(Koehler사) 장치를 사용하여 PGMEA와 IPA의 자연발화온도(AIT, autoignition temperature)와 발화지연시간을 측정하였다. PGMEA와 IPA 혼합물의 9개의 혼합조성에서 최소자연발화온도를 측정하였다. 이 후 혼합물의 각 조성변화에 따른 활성화에너지(activation energy)를 계산하였다.
본 연구에서는 측정된 PGMEA와 IPA계의 인화점과 점도, 최소자연발화온도를 활용하여 조성 변화에 따른 인화점 및 점도, AIT 예측 모델을 제시하였다.
단일물질인 PGMEA의 인화점은 44℃로 측정되었으며, IPA의 인화점은 12℃로 측정되었다. PGMEA와 IPA 혼합물의 인화점은 PGMEA(0.9)과 IPA(0.1)계에서는 26℃, PGMEA(0.8)과 IPA(0.2)계에서는 20℃, PGMEA(0.7)과 IPA(0.3)계에서는 19℃, PGMEA(0.6)과 IPA(0.4)계에서는 16℃, PGMEA(0.5)과 IPA(0.5)계에서는 15℃, PGMEA(0.4)과 IPA(0.6)계에서는 14℃, PGMEA(0.3)과 IPA(0.7)계에서는 14℃, PGMEA(0.2)과 IPA(0.8)계에서는 13℃, PGMEA(0.1)과 IPA(0.9)계에서는 13℃로 측정되었다. 또한 각각의 조성에서 폭발하한계를 계산하였다.
단일물질인 PGMEA의 Antoine 식에 의한 폭발하한계는 2.01Vol%로 계산되었으며, IPA의 Antoine 식에 의한 폭발하한계는 2.35Vol%로 계산되었다. 화학양론을 이용한 Jones식에 의한 PGMEA의 폭발하한계/상한계는 1.50Vol%/9.52Vol%로 계산되었으며 IPA의 폭발하한계/상한계는 2.45Vol%/15.61Vol% Jones식과 같이 화학양론을 이용한 Pintar식에 의한 PGMEA의 폭발하한계/상한계는 1.39Vol%/8.98Vol%로 계산되었으며, IPA의 폭발하한계/상한계는 2.28Vol%/14.72Vol%로 계산되었다. Shimy식에 의한 PGMEA의 폭발하한계는 1.33Vol%로 IPA의 폭발하한계는 2.67Vol%로 계산되었다. Monakhov식에 의한 PGMEA의 폭발하한계는 1.43Vol%로 IPA의 폭발하한계는 2.29Vol%로 계산되었다. Jones식에 의해 계산된 폭발하한계를 Le Chetelier 법칙를 통해 계산된 혼합물의 폭발하한계는 PGMEA(0.9)과 IPA(0.1)계에서는 2.06Vol%, PGMEA(0.8)과 IPA(0.2)계에서는 2.10Vol%, PGMEA(0.7)과 IPA(0.3)계에서는 2.15Vol%, PGMEA(0.6)과 IPA(0.4)계에서는 2.18Vol%, PGMEA(0.5)과 IPA(0.5)계에서는 2.22Vol%, PGMEA(0.4)과 IPA(0.6)계에서는 2.25Vol%, PGMEA(0.3)과 IPA(0.7)계에서는 2.28Vol%, PGMEA(0.2)과 IPA(0.8)계에서는 2.30Vol%, PGMEA(0.1)과 IPA(0.9)계에서는 2.33Vol%로 계산되었다.
단일물질인 PGMEA의 점도는 0.0007Pa·s, IPA의 점도는 0.0012Pa·s로 측정되었다. PGMEA와 IPA 혼합물의 점도는 PGMEA(0.9)과 IPA(0.1)계에서는 0.0008Pa·s, PGMEA(0.8)과 IPA(0.2)계에서는 0.0009Pa·s, PGMEA(0.7)과 IPA(0.3)계에서는 0.0009Pa·s, PGMEA(0.6)과 IPA(0.4)계에서는 0.0009Pa·s, PGMEA(0.5)과 IPA(0.5)계에서는 0.0010Pa·s, PGMEA(0.4)과 IPA(0.6)계에서는 0.0010Pa·s, PGMEA(0.3)과 IPA(0.7)계에서는 0.0011Pa·s, PGMEA(0.2)과 IPA(0.8)계에서는 0.0011Pa·s, PGMEA(0.1)과 IPA(0.9)계에서는 0.0012Pa·s로 나타났다.
단일물질인 PGMEA의 최소자연발화온도는 320℃로 측정되었으며, IPA의 최소자연발화온도는 415℃로 측정되었다. PGMEA와 IPA 혼합물의 최소자연발화온도는 PGMEA(0.9)과 IPA(0.1)계에서는 330℃, PGMEA(0.8)과 IPA(0.2)계에서는 340℃, PGMEA(0.7)과 IPA(0.3)계에서는 360℃, PGMEA(0.6)과 IPA(0.4)계에서는 365℃, PGMEA(0.5)과 IPA(0.5)계에서는 370℃, PGMEA(0.4)과 IPA(0.6)계에서는 375℃, PGMEA(0.3)과 IPA(0.7)계에서는 378℃, PGMEA(0.2)과 IPA(0.8)계에서는 390℃, PGMEA(0.1)과 IPA(0.9)계에서는 403℃로 나타났다. 또한 각각의 조성에서 활성화에너지를 계산하였다. 단일물질인 PGMEA는 59.83kJ/mol, IPA는 152.32kJ/mol이며, PGMEA(0.9)과 IPA(0.1)계에서는 29.28kJ/mol, PGMEA(0.8)과 IPA(0.2)계에서는 48.87kJ/mol, PGMEA(0.7)과 IPA(0.3)계에서는 30.80kJ/mol, PGMEA(0.6)과 IPA(0.4)계에서는 80.09kJ/mol, PGMEA(0.5)과 IPA(0.5)계에서는 49.67kJ/mol, PGMEA(0.4)과 IPA(0.6)계에서는 96.09kJ/mol, PGMEA(0.3)과 IPA(0.7)계에서는 103.98kJ/mol, PGMEA(0.2)과 IPA(0.8)계에서는 116.39kJ/mol, PGMEA(0.1)과 IPA(0.9)계에서는 139.68kJ/mol로 계산되었다.
제시된 실험자료와 예측 모델은 산업현장에서 PGMEA와 IPA를 제조, 취급하는 공정 및 폐기하는 과정에서 안전을 확보하는 자료로 제시하고자 한다. 점도는 혼합물의 조성에 따른 점도 변화를 예측하고, 실제 혼합하였을때 침천물, 응고상태, 반응성을 종합적으로 분석하여 화학물질 혼합 배출여부를 판단하는 중요한 인자로 활용하고, MSDS가 없는 혼합조성 화학물질의 인화점, 자연발화온도, 폭발하한계 등 물리적 특성은 설비 운전조건에 반영하고, 인화점은 위험물안전관리법 법규 준수에 중요한 데이터로 활용하고자 한다.

The semiconductor industry is known to the public as a high-tech industry, a precision industry, and a clean industry, but various gases and chemicals are used behind it, so the semiconductor industry and chemical factories are latented risk of fire, explosion, and leakage due to chemical substances.
Thinner, IPA(Isopropyl alcohol), stripper, developer, photoresist, etc, which are commonly used in the semiconductor process, are mostly flammable materials, and fire can easily occur even when exposed to a small ignition source due to overheating of equipment, leakage, or careless handling while process.
In this study, PGMEA(Propylene glycol monomethyl ether acetate), the thinner most frequently used as a solvent in the manufacturing process in the semiconductor industry, and IPA used in the cleaning process were selected as the target of mixture composition evaluation(volume percent). The flash points of PGMEA and IPA pure substances and mixtures were measured using STANHOPE-SETA''s Setaflash Series 8 Active Cool device, the explosion limit of the pure substance was calculated using the measured flash point, stoichiometry, and the number of constituent elements, and the explosion limit of the mixture was calculated using Le Chatelier''s law.
The viscosity of pure substances and mixtures was measured using the SV-10 device, which is a vibration type viscometer from AND, and a predictive model of the viscosity according to the composition change was presented using the measured viscosity.
The autoignition temperature(AIT) and ignition delay time of PGMEA and IPA were measured using an ASTM E659(Koehler) apparatus. The minimum auto-ignition temperature were measured in nine mixture compositions of PGMEA and IPA mixtures. After that, the activation energy according to each composition change of the mixture were calculated.
In this study, a model that can predict the flash point and viscosity, AIT according to the composition change is presented using the measured flash points and viscosity, minimum auto-ignition temperatures of PGMEA and IPA system.
The flash point of the single substance PGMEA was measured at 44°C, and the flash point of IPA was measured at 12°C.
The flash point of a mixture of PGMEA and IPA is 26℃ for PGMEA(0.9) and IPA(0.1), 20℃ for PGMEA(0.8) and IPA(0.2), 19℃ for PGMEA(0.7) and IPA(0.3), PGMEA(0.6) and IPA(0.4) at 16℃, PGMEA(0.5) and IPA(0.5) at 15℃, PGMEA(0.4) and IPA(0.6) at 14℃, PGMEA(0.3) and IPA(0.7) The measurement was 14°C in the system, 13°C in the PGMEA(0.2) and IPA(0.8) system, and 13°C in the PGMEA(0.1) and IPA(0.9) system. In addition, the lower explosion limit was calculated for each composition.
The lower explosive limit according to the Antoine equation of PGMEA, a single substance, was calculated as 2.01Vol%, and the lower explosive limit by the Antoine equation of IPA was calculated as 2.35Vol%.
According to the Jones equation using stoichiometry, the lower/upper explosion limit of PGMEA was calculated as 1.50Vol%/9.52Vol%, and the lower/upper explosion limit of IPA was 2.45Vol%/15.61Vol%. According to the Pintar equation, the lower/upper explosion limit of PGMEA was calculated as 1.39Vol%/8.98Vol%, and the lower/upper explosion limit of IPA was calculated as 2.28Vol%/14.72Vol%. The lower explosive limit of PGMEA according to the Shimy equation was 1.33Vol%, and the lower explosive limit of IPA was calculated as 2.67Vol%. According to the Monakhov equation, the lower explosive limit of PGMEA was 1.43Vol%, and the lower explosive limit of IPA was 2.29Vol%.
The lower explosive limit of the pure substance calculated by the Jones equation was calculated using the Le Chetelier''s law. The lower explosive limit of the mixture is 2.06Vol% in PGMEA(0.9) and IPA(0.1), 2.10Vol% in PGMEA(0.8) and IPA(0.2), and 2.15Vol% in PGMEA(0.7) and IPA(0.3), 2.18Vol% in PGMEA(0.6) and IPA(0.4), 2.22Vol% in PGMEA(0.5) and IPA(0.5), 2.25Vol% in PGMEA(0.4) and IPA(0.6), PGMEA(0.3) And IPA(0.7) system were calculated as 2.28Vol%, PGMEA(0.2) and IPA(0.8) system as 2.30Vol%, and PGMEA(0.1) and IPA(0.9) system as 2.33Vol%.
The viscosity of the single substance PGMEA was measured as 0.0007 Pa·s, and the viscosity of IPA was measured as 0.0012 Pa·s. The viscosity of the mixture of PGMEA and IPA is 0.0008 Pa·s in PGMEA(0.9) and IPA(0.1) system, 0.0009 Pa·s in PGMEA(0.8) and IPA(0.2) system, and in PGMEA(0.7) and IPA(0.3) system. 0.0009 Pa·s, 0.0009 Pa·s in PGMEA(0.6) and IPA(0.4) system, 0.0010 Pa·s in PGMEA(0.5) and IPA(0.5) system, 0.0010 Pa·s in PGMEA(0.4) and IPA(0.6) system .s, 0.0011 Pa·s for PGMEA(0.3) and IPA(0.7) system, 0.0011 Pa·s for PGMEA(0.2) and IPA(0.8) system, 0.0012 Pa·s for PGMEA(0.1) and IPA(0.9) system appeared as.
The minimum autoignition temperature of the single substance PGMEA was measured at 320℃, and the minimum autoignition temperature of IPA was measured at 415℃. The minimum autoignition temperature of PGMEA and IPA mixture is 330℃ for PGMEA(0.9) and IPA(0.1), 340℃ for PGMEA(0.8) and IPA(0.2), and 360℃ for PGMEA(0.7) and IPA(0.3), 365℃ for PGMEA(0.6) and IPA(0.4), 370℃ for PGMEA(0.5) and IPA(0.5), 375℃ for PGMEA(0.4) and IPA(0.6), PGMEA(0.3) and IPA It was 378℃ in(0.7) system, 390℃ in PGMEA(0.2) and IPA(0.8) system, and 403℃ in PGMEA(0.1) and IPA(0.9) system. In addition, activation energy was calculated for each composition. The single substance, PGMEA, is 59.83 kJ/mol, and IPA is 152.32 kJ/mol. PGMEA(0.9) and IPA(0.1) system 29.28 kJ/mol, PGMEA(0.8) and IPA(0.2) system 48.87 kJ/mol, PGMEA(0.7) and IPA(0.3) system 30.80 kJ/mol, PGMEA(0.6) and IPA(0.4) system 80.09kJ/mol, PGMEA(0.5) and IPA(0.5) system 49.67kJ/mol, PGMEA(0.4) and IPA(0.6) system 96.09kJ/mol, PGMEA(0.3) And IPA(0.7) system were calculated as 103.98 kJ/mol, PGMEA(0.2) and IPA(0.8) system as 116.39 kJ/mol, and PGMEA(0.1) and IPA(0.9) system as 139.68 kJ/mol.
The presented experimental data and predictive models are intended to be presented as data to secure safety and foundations in the manufacturing, handling and disposal processes of PGMEA and IPA. The viscosity predicts the change in viscosity according to the composition of the mixture, and when it is actually mixed, it is used as an important factor to determine whether the chemical mixture is discharged by comprehensively analyzing sediment, solidification state, and reactivity. Physical characteristics such as flash point, spontaneous ignition temperature, and lower explosive limit of chemical substances are reflected in facility operating conditions, and flash point is intended to be used as important data for compliance with the Dangerous Substances Safety Management Act.

목차

등록된 정보가 없습니다.

최근 본 자료

전체보기

댓글(0)

0