메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

한지훈 (호서대학교, 호서대학교 대학원)

지도교수
홍선기
발행연도
2021
저작권
호서대학교 논문은 저작권에 의해 보호받습니다.

이용수25

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (11)

초록· 키워드

오류제보하기
The most problem when applying deep learning algorithms to motor fault diagnosis and prediction is outlier data. In the previous studies, it is assumed that all states data for target motor exist in the big data set. However, this is data that is difficult to collect. This assumption for convenience of experimentation reduces the versatility of the system. To solve this problem, a CNN-based motor fault diagnosis and prediction system considering outlier data is proposed.
In the proposed system, a diagnosis model using DT-CNN, an open set recognition technique capable of classifying outlier data, is used. Also, a prediction model that learns the RMSE pattern is used. The prediction model examines the similarity based on the outlier data classified in the diagnosis model. In order to develop the proposed system, a measurement environment based on LABVIEW is constructed. The possibility of using the CNN-based algorithm model is confirmed. Hyper-parameter optimization using genetic algorithms that help system learning and virtual data generation techniques using GAN algorithms are studied. The proposed system is constructed through the above studies. The robustness of the proposed system against transient disturbances is confirmed. In addition, the performance of motor aging diagnosis and failure prediction is evaluated. The proposed system is expected to help more general-purpose motor fault diagnosis and prediction.

목차

등록된 정보가 없습니다.

최근 본 자료

전체보기

댓글(0)

0