메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

홍재영 (강릉원주대학교, 강릉원주대학교 일반대학원)

발행연도
2020
저작권
강릉원주대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
The substation changes high-voltage power which is produced by the plant into low-voltage power and supplies it to the customer. If a fault occurs at a substation, there is a high probability of a spread fault, so it is necessary to quickly determine the fault and reduce the time to restoration from the fault. Now SOP(Standard Operation Procedure) is fault restoration method applied by the KEPCO provides switch operation and failure restoration procedures etc for 15 types faults. However, SOP is insufficient responses to other than 15 types, and errors may occur because of the operator determination of the fault through work knowledge and experience. Furthermore, traditional SOP can not fault recovery considering transformer capacities.
Therefore, in this paper, we propose an algorithm that can support fault restoration by using optimization techniques GA(Genetic Algorithm) of AI. And reducing possibility of human error, it complements the SOP of fault recovery taking into account the transformer spare capacity, builds automation base, and provide a GUI for convenient.
The proposed GA for supporting fault restoration of 154kV substations is a method of generating chromosomes, and then finding the optimal solution of the fault restoration path through evolution. First, the choice target is the 4Bank 154kV substation, and SOP are collected and analyzed to perform the pre-processing through the corresponding one-line diagram. Next, we design and realize this algorithm by selecting constraints, fitness functions, and chromosome generation. In addition, performance verification and simulation were performed while changing weights to determine the final fitness function. In other words, it was pre-processed by receiving information on the operation of CB, DS, and M.Tr of substation in SOP, and programmed to indicate the optimal fault restoration path for the remaining capacity on the fault situation of the transformer. Finally, it can be seen that the proposed GA provides an optimal switch path to ensure that power is supplied regardless of the fault location of the M.Tr.
In conclusion, this paper can be supply the fault restoration support for the transformer spare capacity that is not in the SOP. And can plan to support fault restoration and reduce the possibility of operator error, and make it possible to conveniently, quickly, and accurately determine the fault recovery situation.

목차

목 차 1
표 목차 2
그림목차 3
Ⅰ. 서론 5
1. 연구 배경 5
2. 연구 동향 6
3. 연구 내용 8
Ⅱ. 154kV 변전소 및 표준복구절차 분석 9
1. 154kV 변전소 9
2. 변전소 자동화 10
3. 표준복구절차 분석 12
Ⅲ. 유전 알고리즘을 적용한 154kV 변전소 고장복구지원 알고리즘 30
1. 유전 알고리즘 개요 및 구조 30
2. 154kV 변전소의 전처리 34
3. 고장복구지원 알고리즘 35
4. 유전 알고리즘을 적용한 154kV 변전소의 고장복구지원 38
설계, 구현 및 성능 평가
5. 결과 및 고찰 54
Ⅳ. 결론 58
참고문헌 60
영문초록 63

최근 본 자료

전체보기

댓글(0)

0