메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

소유진 (동국대학교, 동국대학교 대학원)

지도교수
이재훈
발행연도
2020
저작권
동국대학교 논문은 저작권에 의해 보호받습니다.

이용수14

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this paper, the efficiency and accuracy of reduced-order models derived by using the discrete empirical interpolation method were verified for the analysis of nonlinear hyperelastic Also, the matrix version of discrete empirical interpolation method was applied to the analysis of nonlinear hyperelastic materials.
Nonlinear analysis was performed using the Newton-Raphson method within finite element framework. Offline/online strategies were used to construct an efficient reduced-order model. In the offline stage, analysis of the full order model was performed, and data was generated by solving the full order model and by the snapshot method. Then, a proper orthogonal decomposition was applied to the snapshot matrix to extract a proper orthogonal mode. And, the interpolation point was selected by applying the discrete empirical interpolation method algorithm from the proper orthogonal mode, and sample elements were selected. In the online step, only the interpolation points selected in the offline step and the sample elements are calculated, and the full order model is approximated using the Galerkin projection.
Two examples were chosen to verify the accuracy and efficiency of a nonlinear hyperelastic material parametric reduced-order model using discrete empirical interpolation. The parametric reduced-order model of the rubber specimen for tensile testing showed 80.73% reduction in computational time compared to the full order model. As a result of performing 100 samplings on the parametric reduced-order model, the accuracy was verified with the average error of 0.015%. In addition, the parametric reduced-order model of the elastic rubber mount showed that the computational time was reduced by 99.61% compared to the full order model. As a result of performing 50 samplings on the parametric reduced-order model, the accuracy was verified with the average error of 0.0025%. As a result of the reduced-order model constructed by applying a matrix version of discrete empirical interpolation method to nonlinear hyperelastic material, the accuracy was verified with the error of 0.12%.

목차

제 1 장 서 론 1
1.1. 연구배경 1
1.2. 연구목적 및 범위 4
제 2 장 유한요소기반 비선형 초탄성 재료의 정적 해석 6
2.1. Newton-Raphson method 6
2.2. Total Lagrangian formulation 기반 유한요소 정식화 8
2.3. 초탄성 재료의 응력-변형률 관계 11
2.3.1. 초탄성 재료 모델 13
2.3.1.1. Neo-Hookean 모델 13
2.3.1.2. Mooney-Rivlin 모델 13
제 3 장 비선형 초탄성 재료의 효율적 해석을 위한 축소모델 구축 15
3.1. 적합 직교 분해 15
3.2. 스냅샷 방법 17
3.3. 희소 샘플링 기법 18
3.3.1. 이산 경험 보간법 18
3.2.2. 행렬기반 이산 경험 보간법 21
제 4 장 수치 예제 23
4.1. 이산 경험 보간법을 이용한 파라메트릭 축소모델 구축 24
4.1.1. 인장 시험용 고무 시편 예제 24
4.1.2. 탄성 마운트 예제 31
4.2. 행렬기반 이산 경험 보간법을 적용한 축소모델 구축 40
제 5 장 결 론 46
참 고 문 헌 48
ABSTRACT 53

최근 본 자료

전체보기

댓글(0)

0