메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김상우 (경북대학교, 경북대학교 대학원)

지도교수
신용철
발행연도
2019
저작권
경북대학교 논문은 저작권에 의해 보호받습니다.

이용수12

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
In this study, spatially and temporally distributed soil moisture were estimated using high resolution multiple sensors. The MODIS(MODerate Resolution Imaging Spectroradiometer) and Sentinel-1A/B based soil moisture values in South Korea were estimated based on the regression model. Then, we estimated the long-term(2001 to 2018) daily soil moisture values at the spatial and temporal scales using Sentinel-1A/B Synthetic Aperture Radar(SAR) sensor images and soil moisture data assimilation technique. Also, we tested a deep learning approach in deriving Sentinel-1A/B based soil moisture estimates. Additionally, SMDI(Soil Moisture Deficit Index) and FFDI(Forest Fire Danger Index) were estimated to evaluate drought and wildfire vulnerability using the daily estimated soil moisture values.

1. We estimated the spatially-distributed soil moisture using MODIS and Sentinel-1A/B satellite images. The monthly MODIS soil moisture values were highly influenced by precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM(Digital Elevation model) while the temperature was inversely correlated with the soil moisture. Additionally, the Sentinel-1A/B based soil moisture(10m×10m) were estimated based on the linear relationship between the TDR(Time Domain Reflectrometry) measurements and backscatter coefficients. The regression equations were derived based on the relationships between the TDR measurements and backscatter coefficients. The TDR measurements at the 51 monitoring sites from RDA(Rural Development Administration) were used to derive the regression equations. Then, the Sentinel-1A/B based soil moisture values were estimated using the derived regression equations. The Sentinel-1A/B based soil moisture matched the TDR measurements with the high correlations(more than 0.7), although uncertainties exist, especially for forest and urban areas.

2. We estimated the spatially/temporally distributed soil moisture using Sentinel-1A/B SAR(Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. The soil moisture data assimilation technique adapting GA(Genetic Algorithm) can extract the soil hydraulic parameters from soil moisture measurements. The SWAP(Soil Water Atmosphere Plant) model integrated with the soil moisture assimilation technique simulates the soil moisture using the estimated soil hydraulic parameters and meteorological data. The soil moisture data assimilation technique derived the soil hydraulic parameters from the individual Sentinel-1A/B based soil moisture images. Then, the derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values from 2001 to 2018 with the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the Sentinel-1A/B based soil moisture under various land surface conditions(bare soil, crop, forest, and urban).

3. A deep learning(Deep Neural Network-DNN) model was used to estimate soil moisture using Sentinel-1A/B based backscatter coefficients and environmental input data(DEM, landuse, soil types, temperature, and rainfall). The number of hidden layers/nodes and the radio of drop-out were determined based on the least error empirically through the given generation(epoch). Also, we tested the DNN performance in estimating soil moisture based on various antecedent rainfall conditions from the present(n) to past 5 days(n-5). The correlation(R: 0.974) of estimated soil moisture with the antecedent rainfall(n-1) was higher than others. Although this study was conducted under the limited conditions, the performance of DNN could be improved with more input data available.

4. We estimated SMDI and FFDI to assess drought and wildfire vulnerability in South Korea. SMDI was estimated using the daily soil moisture estimates based on the Sentinel-1A/B SAR images and soil moisture data assimilation technique while FFDI was estimated using KBDI and the meteorological data. Overall, the spatial distributions of SMDI showed the similar trends at the spatial domain with GPM, but FFDI showed differences compared to SMDI and GPM. Although this study was validated under the limited conditions, our findings showed the potential that the soil moisture values can be used to evaluate drought and wildfire vulnerability.

목차

1. 서 론 1
1.1 연구배경 1
1.2 연구동향 4
1.2.1 원격탐사자료를 이용한 토양수분 공간분포 산정 4
1.2.2 원격탐사자료와 토양수분자료동화기법을 연계한 시공간적으로 분포된 일별 토양수분 산정 5
1.2.3 딥러닝을 이용한 통계적 추정 기반 토양수분 산정 6
1.2.4 시공간적으로 분포된 일별 토양수분 활용 7
2. 연구방법 9
2.1 원격탐사자료를 이용한 토양수분 공간분포 산정 10
2.1.1 MODIS 이미지 자료 기반 토양수분 및 정규식생지수 산정 10
2.1.2 Sentinel-1A/B 위성 이미지 기반 토양수분 산정 12
2.2 Sentinel-1A/B SAR와 토양수분자료동화기법을 연계한 시공간적으로 분포된 일별 토양수분 산정 17
2.2.1 토양수분자료동화기법을 이용한 우리나라 토양의 수리학적 매개변수 추출 17
2.2.2 토양의 수리학적 매개변수 기반 시공간적으로 분포된 일별 토양수분 산정 19
2.3 딥러닝을 이용한 통계적 추정 기반 토양수분 산정 22
2.4 시공간적으로 분포된 일별 토양수분 활용 24
2.4.1 토양수분가뭄지수 산정 24
2.4.2 토양수분가뭄지수를 이용한 산불취약성 평가 26
2.5 연구 유역 및 실험방법 29
3. 결과 및 고찰 33
3.1 원격탐사자료를 이용한 토양수분 공간분포 산정 33
3.1.1 MODIS 기반 토양수분 및 정규식생지수 산정 33
3.1.2 토양수분 및 관련인자 상관분석 40
3.1.3 Sentinel-1A/B 기반 후방산란계수 산정 42
3.1.4 Sentinel-1A/B 기반 토양수분 산정 45
3.2 Sentinel-1A/B SAR와 토양수분자료동화기법을 연계한 시공간적으로 분포된 일별 토양수분 산정 49
3.2.1 Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 토양수분 산정 및 검증 49
3.2.2 Sentinel-1A/B와 토양수분자료동화기법을 이용한 우리나라 장기간 일별 토양수분 산정 52
3.3 딥러닝을 이용한 통계적 추정 기반 토양수분 산정 54
3.4 시공간적으로 분포된 일별 토양수분 활용 56
3.4.1 토양수분가뭄지수 산정 56
3.4.2 토양수분가뭄지수를 이용한 산불취약성 평가 58
4. 결 론 61
참 고 문 헌 64

최근 본 자료

전체보기

댓글(0)

0