지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수0
Abstract 1Chapter 1. Introduction 41.1. Study Background 41.2. Literature Review 61.2.1 Thermal related researches in urban outdoor space 61.2.1.1 Urban heat island effect 61.2.1.2 Urban heat budget 71.2.1.3 Heat in urban canyon 91.2.2. The way of discovering urban heat causes 101.3. Research flow 121.4. Research Scope 14Chapter 2. Thermal Comfort and Longwave Radiation over Time in Urban Residential Complexes 152.1. Introduction 152.2. Method 222.2.1. Survey Process 242.2.1.1. Pilot Test 242.2.1.2. Survey Design 242.2.1.3. Observation Site Selection 252.2.1.4. Measurement and Data Collection 252.2.2. Context of the Study Sites 262.2.3. Research Limitations 282.3. Research Findings and Analysis: Causal Analysis of Longwave Radiation Time Shift 282.3.1. Comparison of Tree and Building Effects 292.3.2. Comparison of Building Shade Effect 302.3.3. Time Shift by Tree Volume and Composition 312.3.4. MRT 342.4. Discussion: Energy Sustainability to Improve Thermal Environment 372.4.1. Time Shift of Radiation by Tree Volume and Composition 392.4.2. Time Shift of MRT 402.4.3. Study Limitations 402.4.4. Suggestions for Further Research 412.5. Conclusions 41Chapter 3. Determining Favourable and Unfavourable Thermal Areas in Seoul Using In-Situ Measurements: A Preliminary Step towards Developing a Smart City 443.1. Introduction 443.1.1. Urban Heat and Spatial Typification for Sustainability 443.1.2. Heat Energy and Spatial Typification 463.1.3. Studies Using the Existing Spatial Approaches 473.1.4. Typification Method 493.1.5. Objectives and Application 503.1.6. Research Process 513.2. Extraction of Favourable and Unfavourable Areas 533.2.1. Spatiotemporal Scope 543.2.2. Input Data 543.2.3. Methodology 553.2.4. Results of K-Means Clustering 563.3. Sensible Heat Flux Calculations 583.4. In-Situ Validation 603.4.1. In-Situ Measurement Process 613.4.1.1. Considerations for Measurement Design 613.4.1.2. Observation Site Selection 623.4.1.3. Measurements and Data Collection 623.4.1.4. Context of the Study Sites 643.4.2. Limitations of the in-situ Measurement 653.5. Validation Results: Comparison of Sensible Heat Fluxes from the Six Sites 673.6. Discussion 703.6.1. Spatiotemporal Shift in Sensible Heat Flux 703.6.2. Development of Thermally Sustainable Smart Cities 743.7. Conclusions 75Chapter 4. Analysing sensible heat flux patterns in Seouls land use zoning districts to improve the urban thermal environment 794.1. Introduction 794.1.1 Zoning and the Thermal Environment 804.1.2 Research Trend of Urban Heat, Thermal Environment, and Land Cover in Zoning 824.1.3 Study Objective 844.2. Methods 844.2.1 Study Site 854.2.2 Data 874.2.3 Research flow 894.2.4 K-means clustering (Figure. 20) 904.3. Results 914.3.1 Unfavourable and favourable thermal areas 914.3.2 Analysis of zoning districts for sensible heat flux intensity 924.3.2.1 Unfavourable thermal area (UTA) in the zoning district 934.3.2.2 Favourable thermal area (FTA) in the zoning district 964.4. Discussion 974.4.1 Unfavourable Thermal Area 974.4.2 Favourable Thermal Area 1004.4.3 Application to Zoning 1024.4.4 Guidelines for implementation 1044.5. Limitations and future directions 1054.6. Implications 1064.7. Conclusions 107Chapter 5. Conclusion 110Bibliography 112
0