메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

배명권 (조선대학교, 조선대학교 대학원)

지도교수
정상화
발행연도
2019
저작권
조선대학교 논문은 저작권에 의해 보호받습니다.

이용수9

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
ABSTRACT

A Study on the Cell disruption of Microalgae using Ultrasound sonication


Bae, Myeong Gwon
Advisor : Prof. Jeong, Sang-Hwa, Ph.D.
Department of Mechanical Engineering,
Graduate School of Chosun University

Recently, because of industry development, the consumption of fossil energy such as petroleum, coal, and natural gas has increased exponentially. Therefore, there is an issue with environmental pollution caused by greenhouse gases due to energy shortages. The increase in carbon dioxide emissions is getting serious. In order to solve these serious problems, many studies are being conducted on renewable energy sources and alternative bioenergy. Among them, the third generation bioenergy, microalgae, has recently emerged as a resource with infinite potential. Microalgae are photosynthetic and independent nutrient microorganisms, a sustainable source of bio-energy without environmental pollution because they produce useful substances by synthesizing the necessary nutrients using inorganic light. In addition, one efficient approach is the production of biodiesel based on biomass extracted from the useful materials from microalgae; this approach also has a carbon dioxide reduction effect that might reduce global warming. To extract lipids from microalgae, the cell membrane disruption process is essential during the harvesting process, and research is being conducted into various ways for efficient lipid extraction. Harvesting methods are largely divided into mechanical and non-mechanical methods. In general, the mechanical methods has the advantage of maintaining the protein structure of the microalgae well, but the processing is complicated, and the maintenance cost is high. Non-mechanical methods can harvest large quantities and are economical, but there are fatal disadvantages due to environmental pollution caused by chemical treatments. However, at present, the efficiency of extracting lipids from microalgae still requires research and development due to the lack of productivity and economy compared to existing bioenergy.
In this study, the efficiency of continuous and highly productive cell membrane crushing using an ultrasonic mechanical method, which causes not environmental pollution or has a not post-treatment cost due to the chemical process, was used for economic and efficient lipid extraction of microalgae. When microalgae are irradiated with ultrasonic waves according to type , the crushing efficiency of the microalgae varies greatly depending on the size and concentration of the cell and the thickness of the cell wall. This study was conducted to investigate the optimum crushing efficiency condition for the microalgae Chlorella sp. In addition, the necessary data was collected using various sensors to analyze the growth curves of cultured Chlorella sp. In order to measure the crystal coefficient of the growth curve, the growth curve was approximated using two types of mathematical equations: the Gompertz model and the Logistic model. In the low frequency experiment, four kinds of cell density, output power, initial capacity, and pH were designated as variables. Finally, in the continuous ultrasonic experiment, five kinds of optical density, output power, cell cycle flow rate, duty cycle, and pH were designated as variables, and the relationship between the variables was analyzed. Through the experiments, the effects of the interactions between the variables on the cell disruption efficiency and the optimum disruption conditions were studied. Experimental results showed that cell crushing efficiency was most affected by output power in all three types of ultrasonic devices. Moreover, the highest crushing efficiency result was obtained under all conditions when the pH was adjusted in parallel.

목차

목 차
LIST OF TABLES Ⅲ
LIST OF FIGURES Ⅳ
ABSTRACT Ⅵ
제1장 서 론 1
제1절 연구 배경 1
제2절 연구 동향 7
제3절 연구내용 및 방법 9
제2장 초음파 개념 및 미세조류 배양 11
제1절 초음파 개념 11
1. 초음파 11
2. 초음파 공동 현상 12
제2절 미세조류 균주 및 배지 14
제3절 미세조류 배양 및 성장 곡선 모델링 15
1. 미세조류 배양 15
2. 성장곡선 모델링 17
제3장 초음파 처리 공정 22
제1절 회분 저주파 장치 시스템의 구성 22
1. 회분 저주파 장치 시스템 22
2. 회분 저주파 파쇄 실험조건 24
제2절 회분 저주파 장치의 세포 파쇄 25
1. 초기 균체 농도에 따른 세포 파쇄 효율 25
2. 출력 파워에 따른 세포 파쇄 효율 28
3. 초기 균체 용량에 따른 세포 파쇄 효율 30
4. 초기 pH에 따른 세포 파쇄 효율 31
제3절 회분 고주파 장치 시스템의 구성 34
1. 회분 고주파 장치 시스템 34
2. 회분 고주파 파쇄 실험조건 37
제4절 회분 고주파 장치의 세포 파쇄 38
1. 초음파 장치의 조사 위치에 따른 파쇄 효율 38
2. 초기 균체 농도에 따른 세포 파쇄 효율 40
3. 파형 종류에 따른 세포 파쇄 효율 42
4. 초기 인가전압에 따른 세포 파쇄 효율 45
제4장 연속 저주파 처리 공정 48
제1절 연속 저주파 처리 장치 시스템의 구성 48
1. 연속 저주파 처리 장치 시스템 48
2. 연속 저주파 파쇄 실험조건 51
제2절 연속 저주파 장치의 세포 파쇄 51
1. 초기 균체 농도에 따른 세포 파쇄 효율 51
2. 출력 파워에 따른 세포 파쇄 효율 53
3. 균체 순환 유량에 따른 세포 파쇄 효율 55
4. 초음파 작동주기에 따른 세포 파쇄 효율 58
5. 초기 pH에 따른 세포 파쇄 효율 62
제 5 장 결론 65
제 1절 연구 결론 65
제 2절 향후 연구 방향 68
참 고 문 헌 69

최근 본 자료

전체보기

댓글(0)

0