메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이재근 (경북대학교, 경북대학교 대학원)

지도교수
민기홍
발행연도
2020
저작권
경북대학교 논문은 저작권에 의해 보호받습니다.

이용수8

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Radar data assimilation increases the accuracy of precipitation prediction in a numerical model by assimilating hydrometeor information and by producing analysis fields similar to the actual atmosphere. Single polarization (single-pol) radar data assimilation has limits because it has hydrometeor classification method from error prone model background temperature field and radar operators only consist of reflectivity. Dual polarization (dual-pol) radar can obtain information on the characteristics and types of precipitation particles in the atmosphere. Dual-pol radar data has the potential to improve the accuracy model forecasted precipitation compared to single-pol radar.
This study conducted radar data assimilation through hydrometeor operators using dual-pol radar variables and direct classification algorithms to improve the accuracy of precipitation prediction not obtained by single-pol radar data assimilation.
In cases 1 and 3, dual-pol radar data assimilation experiments improved the accuracy of precipitation prediction compared to CTRL and single-pol radar data assimilation experiments by applying the dual-pol radar hydrometeor classification fields and hydrometeor operators with dual-pol radar variables. However, case 2 showed that the hydrometeors increased by dual-pol radar variables increased the temperature of the atmosphere due to latent heating, resulting in less accurate prediction than the CTRL. The model background temperature adjustment must be accompanied when hydrometeors are injected in the model atmosphere. Overall, the dual-pol radar hydrometeor operators contribute to an increase of the absolute amount of assimilated hydrometeors and the dual-pol radar hydrometeor classification method contributes to the redistribution of vertical hydrometeor profiles. The accuracy of precipitation forecast experiment show that when the dual-pol radar operators and hydrometeor classification fields are both applied at the same time, the performance is maximized.

목차

1. 서론 1
2. 연구 방법 6
2.1. 모델 구성 및 설정 6
2.2. 분석 사례 10
2.3 자료동화 실험설계 16
2.3.1 수상체 분류 22
2.3.2 수상체 관측연산자 26
2.4 정량적 오차 검증 방법 30
3. 연구 결과 32
3.1 증분 분석 32
3.2 연직 수상체 분포 분석 51
3.3 누적 강수량 분석 58
3.4 정량적 강우 검증 65
4. 요약 및 결론 70
참고문헌 74
영문초록 81

최근 본 자료

전체보기

댓글(0)

0