메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김준하 (전북대학교, 전북대학교 일반대학원)

지도교수
유동진
발행연도
2020
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
As the environmental contamination and the depletion of fossil fuels become severe problems, demand for renewable energy is increasing. Fuel cells are efficient energy conversion devices that converts chemical energy pertaining in an fuel and oxidant directly into electrical energy.
Among of them, proton exchange membrane fuel cell(PEMFC) has received a lot of attention owing to its low operating temperature and high energy density. Despite the merits of PEMFCs, commercialization is hampered by the weakness using very expensive materials such as perfluorinated sulfonic acid as electrolytes and noble metals for electrocatalyst. As an alternative, alkaline fuel cell(AFC) which have a faster oxigen reduction reaction and allows the use of non noble metal catalysts is being developed to replace PEMFC with these faults. Anion exchange membrane(AEM) is an essential component of AFC, which acts as an ion transport medium from the cathode to the anode.
In this study, poly(arylene ether sulfone)(PAES) membranes were prepared for 5 species with various degree of bromination(DB) to investigate the electrochemical performance and chemical stability of anion exchange membranes. First, the PAES block copolymer was successfully synthesized through nucleophilic aromatic substitution reaction, followed by the bromination reaction proceeded to have various DB values (10% to 50%) through N-bromosuccinimide(NBS) equivalent control. After brominated PAESs(Br-PAESs) were dissolved in N-methyl-2-pyrrolidone(NMP), 1,4-diazabicyclo[2.2.2]octane (DABCO) was added for the quaternization reaction.
The structures of prepared polymers were confirmed by proton nuclear magnetic resonance(1H-NMR) and Fourier transform infrared spectroscopy(FT-IR). The thermogravimetric analysis(TGA) and differential scanning calorimetry(DSC) analyzes were performed to confirm the thermal properties of synthesized polymers. Ion exchange capacity(IEC), water uptake, hydration number, and swelling ratio were investigated to characterize membranes. Q-PAES with high degree of bromination(DB) exhibited poor physical properties, high ionic conductivity(under 100% relative humidity) in range of 30-51 mS·cm-1 and distinct microphase separation. The alkaline stability of fabricated membranes was carried out 1M KOH solution for 1,000 hours. AEM with high DB showed higher decomposition rates due to the decrease of electron density of the main chain by more functional groups. On the basis of research, higher DB values can raise efficiency of fuel cell but diminish the chemical stability. So, the regulation of DB values may be an important factor in determining the properties of the anion exchange membrane.

목차

제 1장. 서론 1
1.1. 연료전지의 원리 2
1.2. 연료전지의 분류 4
1.3. 알칼라인 연료전지 8
1.4. 음이온 교환막 11
제 2장. 실험 14
2.1. 시약 및 재료 14
2.2. 실험방법 14
2.2.1. 친수성 전구체의 합성 14
2.2.2. 소수성 중합체의 합성 15
2.2.3. Poly(arylene ether sulfone)(PAES)블록공중합체의 합성 15
2.2.4. 브로민화된 poly(arylene ether sulfone)(Br-PAES)의 합성 15
2.2.5. DABCO를 이용한 4차화된 poly(arylene ether sulfone)(Q-PAES)의 합성 16
2.2.6. Q-PAES의 제막 16
2.3. 특성 분석 16
2.3.1. Proton nuclear magnetic resonance(1H NMR) 16
2.3.2. Fourier-transform infrared spectroscopy(FT-IR) 17
2.3.3. 열 중량 분석법(TGA) 17
2.3.4. 시차 주사 열량측정법(DSC) 17
2.3.5. 이온교환능 (ion exchange capacity, IEC) 18
2.3.6. 함수율(water uptake) 18
2.3.7. 팽창률(swelling ratio) 19
2.3.8. 수화수(hydration number) 19
2.3.9. 원자력 현미경(atomic force microscope, AFM) 19
2.3.10. 이온전도도(ionic conductivity) 20
2.3.11. 알칼라인 안정성(alkaline stability) 20
제 3장. 결과 및 고찰 22
3.1. PAES, Br-PAES 및 Q-PAES의 합성과 구조분석 22
3.2. 용해도 및 제막 31
3.3. 열적 안정성 33
3.4. 물 함습률, 팽창률, 수화수 및 IEC 36
3.5. 형태학 분석 40
3.6. 전기화학적 특성 42
3.7. 알칼라인 안정성 45
제 4장 결론 47
참고문헌 48

최근 본 자료

전체보기

댓글(0)

0