메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

신규희 (경북대학교, 경북대학교 대학원)

지도교수
이규원
발행연도
2020
저작권
경북대학교 논문은 저작권에 의해 보호받습니다.

이용수6

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
Recently, many researchers have used machine learning in remote sensing applications. One of the biggest advantages of machine learning algorithms is to model non-linear relationship between a dependent variable and independent variables without any distributional assumption.
In this study, we have explored the potential use of two supervised machine learnings (decision tree and random forest) in rainfall estimation using dual-polarization radar variables. The radar variables simulated by drop size distribution at ground disdrometer are used to train machine learning algorithms. Several different configurations for machine learning algorithms are considered with different sets of dependent and independent variables. The tuning of random forest model is also tested. It is revealed that specific differential phase is the most important variable to predict rainfall rate while differential reflectivity is the most important to explain residual. The models are evaluated by 10-fold cross validation. It is shown that the machine learning algorithms outperform traditional Z-R relationship. The best model is the random forest model using residual with classified training set.
Further, we have applied the model to Mountain Myeonbong S-band dual-polarization radar data and validated with rain gauges in Automatic Weather Stations. The results show that residuals have spatial variability. It means that residuals from Z-R relationship have structure in space. Convective areas have negative residuals while weak and stratiform areas have positive residuals. The rainfall rates for all the pixels have adjusted with estimated residuals. Adjusted rainfall rates show good agreement with rain gauge especially at high rainfall rate because they correct the rainfall rate by residual.

목차

1. 서론 1
2. 연구 자료 6
2.1 학습 자료 6
2.2 강우추정 자료 15
3. 연구 방법 23
3.1 사용된 기계학습 방법 23
3.2 기계학습을 이용한 강우추정 28
3.2.1. 사용된 경험적 관계식 28
3.2.2. 기계학습 모형 29
3.2.3. 강우추정 방법 33
3.2.4. 검증방법 35
3.3 레이더 자료의 강우추정 적용 37
4. 연구 결과 38
4.1 기계학습을 이용한 강우추정 결과 38
4.2 레이더 자료의 강우추정 적용 결과 53
5. 요약 및 결론 66
참고문헌 69
영문초록 74

최근 본 자료

전체보기

댓글(0)

0