메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

곽나영 (성균관대학교, 성균관대학교 일반대학원)

지도교수
이근백
발행연도
2020
저작권
성균관대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
같은 개체로부터 반복 측정한 자료를 경시적 자료(longitudinal data)라고 한다. 이러한 자료를 분석하려면 흔히 사용되는 횡단 자료 분석과는 다른 분석 방법이 필요하다. 즉, 경시적 자료에서 공변량의 효과를 추정할 때에는 반복 측정된 결과 간의 상관성을 고려해야 하며, 따라서 공분산행렬을 모형화 하는 것이 매우 중요하다. 그러나 추정해야 할 모수가 많고, 추정된 공분산행렬이 양정치성을 만족해야 하므로 공분산 행렬의 모형화는 쉽지 않다. 특히 다변량 경시적 자료분석을 위한 공분산행렬의 모형화는 더욱더 심층적인 방법론을 사용해야 한다.
본 논문은 다변량 경시적 자료분석을 위한 공분산행렬을 모형화하기 위해 두 가지 방법론을 고찰한다. 두 방법 모두 수정된 콜레스키 분해(modified Cholesky decomposition)를 이용하여 시간에 따른 응답변수들의 상관관계를 설명하고 있다. 하지만 같은 시간에서 관측된 응답변수들간의 상관관계를 설명하는 방법이 다르다. 첫 번째 방법론에서는 향상된 선형 공분산 모형(enhanced linear covariance models)을 사용하여 공분산행렬이 양정치성을 만족하도록 한다. 두 번째 방법론에서는 분산-공분산 분해(variance-correlation decomposition)와 초구분해(hypersphere decomposition)을 이용하여 공분산 행렬을 모형화 한다. 이 두 방법론의 성능을 비교하고자 모의실험을 진행한다.

목차

제1장 서론 1
제2장 공분산 행렬의 모형화 5
2.1 단변량 경시적 자료에서의 MCD를 이용한 모형화 5
2.2 다변량 경시적 자료에서의 MCD를 이용한 모형화 6
2.2.1 수정된 블록 콜레스키 분해 6
2.2.2 향상된 혁신공분산행렬을 이용한 모형화 8
2.2.3 초구분해를 이용한 모형화 9
제3장 모의실험 12
3.1 Kohli 등 (2016)에서의 자료집합 적합 12
3.2 Lee 등 (2019)에서의 자료집합 적합 28
제4장 결론 44
참고문헌 45

최근 본 자료

전체보기

댓글(0)

0