메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

강유경 (충북대학교, 충북대학교 대학원)

지도교수
김지수
발행연도
2020
저작권
충북대학교 논문은 저작권에 의해 보호받습니다.

이용수11

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Reflection seismic survey in crystalline rock is much more difficult than in sedimentary basins because of the irregular and complex reflector geometry and low S/N across many geological boundaries due to the long period of geological process. In particular, shallow reflections in land seismic data are overwhelmed by random and coherent noises. Furthermore, time shifts caused by rapid variations in the thickness of low-velocities weathering layer and change in elevation of the location with shot points and receivers generate long-wavelength traveltime deviations.
Such long wavelength statics have been solved by weathering correction(refraction statics). Two representative refraction-statics techniques of GRM(conventional method) and IRS(recent method) are discussed in terms of continuities of the refrators and horizontal resolution of the underlying reflectors, especially in the application to crystalline-rock seismic data. The first data set includes the field data from crystalline rock terrane for GRM-based mapping, whereas the second one from Cheongu granitic bodies for IRS-based imaging.
A built-in-house Excel-GRM routine is found to be effective for mapping the shallow refractor, with simply employing a pair of forward and reverse shots. Regarding the deeper refractor mapping, velocity analysis function and time-depth function are computed and presented for a range of values from zero to 50 considerably larger than the optimum value. The increment in values of (distance between surface emergences of forward and reverse rays) was taken being equivalent to the geophone spacing of 10. The bedrock refractor is successfully mapped in 25~35 depth ranges with three values of refractor velocity (decreasing north-eastwards), using the selected optimum value of =10. Optimum value was determined by considering the simple graph and detailed graph for velocity analysis function and time-depth function, respectively.
IRS technique utilizes the first arrival signal instead of first break picking and therefore it is required to remove the shallow noises as much as possible prior to the application, by AGC(automatic gain control) for compensation of decreased amplitude, surgical muting for erasing the dirty-signal zone, and f-k filtering for rejecting the ground-roll. It is designed with optimum parameters of interferometry offset, deconvolution prewhitening, offset reduction stack, smoothing, etc. We tested the parameters and applied IRS to the synthetic data for deep and shallow targets provided by seismic mapping(refraction, 3-component geophone, MASW) and SPS logging from the Cheongju granite area.
The unresolved long-wavelength statics are much resolved by IRS weathering correction and a desired refractor is incidentally and distinctly mapped in the refraction convolution stack(RCS). IRS approach is found to be better than conventional first-break picking method for removing the hyperbolic traveltime deviations in the shot gather, and improving the resolution and continuities of the reflection events in the stack section.

목차

Abstract ⅲ
List of Tables ⅵ
List of Figures ⅶ
Table of Terminology and Symbols ?
Ⅰ. 서 론 1
Ⅱ. 배경이론 3
1. 일반 양방향 전파시간법 3
2. 정적 보정(정보정) 8
(1) 높이 정보정 8
(2) 굴절 정보정(초동발췌 기법) 9
(3) 굴절 정보정(IRS 기법) 12
Ⅲ. GRM 기법에 의한 굴절면 파악 17
1. 둔덕 모양 굴절면의 모델자료에 대한 적용 17
2. 결정질암의 현장자료에 대한 적용 21
Ⅳ. IRS 기법에 의한 반사면의 분해능 향상 26
1. 깊은 반사면에 대한 적용 26
(1) 모델자료에 대한 수집인자 26
(2) 공통 발파점 자료의 관찰 28
(3) 곱말기 단면에서의 굴절면 영상 32
(4) 기반암에 대한 반사 분해능 향상 36
① 곱말기 단면 작성에 대한 자료처리 흐름 36
② 반사이벤트의 분해능 향상 39
2. 청주 화강암체에 대한 적용 42
(1) 현장자료를 이용한 수집인자 설정 42
① 3성분 지오폰 수신 자료를 이용한 호도그램의 작성 43
② 굴절법 탐사 44
③ 표면파 탐사 46
④ 모델자료의 수집인자 47
(2) 공통 발파점 자료와 겹쌓기 단면에서의 보정 효과 49
Ⅴ. 결 론 53
참고문헌 54
감사의 글 58

최근 본 자료

전체보기

댓글(0)

0