건물의 에너지효율기준은 점차 강화되고 있으나, 건물분야는 아직까지도 많은 나라에서 에너지소비의 높은 부문을 차지하고 있다. 커튼월 시스템은 현대 건축에서 많이 사용된다. 오늘날 주요 도시에 위치한 대부분의 고층건물은 커튼월 시스템으로 건설 되었으며 현대 상업건물의 상징이 되었다. 그러나 유리로 된 건물외벽은 매년 미국에서만 400억 달러의 에너지 손실을 초래한다. 이에 따라, 효율적으로 커튼월 벽체를 구성하는 것이 중요하며, 이와 관련한 다양한 연구가 수행되었다. 커튼월 벽체의 열 및 에너지성능을 개선하기 위해 스팬드럴 부분을 효과적으로 단열하는 것이 요구된다. 본 연구는 진공단열패널(VIP)을 적용하여 최적화된 스팬드럴을 개발, 제안하며, 제안된 커튼월 시스템의 열 및 에너지성능을 분석하는 것이 목적이다. VIP를 활용한 커튼월 시스템은 새로운 기술은 아니나, 적합한 구성을 통해 고성능 시스템을 달성하기 위한 솔루션을 제안하는 것에 의의가 있다. 본 연구는 수치해석과 더불어 현장실험(Mock-up)을 통해, 실제건물을 모사하여 옥외성능을 평가했다. 본 연구는 10가지 부분, 1) 스팬드럴의 열전달 방정식 개념 및 도출, 2) 시뮬레이션 모델 및 검증, 3) VIP가 적용된 스팬드럴 구성설계, 4) 2D/3D 시뮬레이션을 통해, 열교 및 내부표면온도 등 시스템의 열성능 검토, 5) 건물에너지 및 비전부-스팬드럴의 비율 검토, 6) VIP 특성검토를 위한 실험실 테스트, 7) 수치해석에 기반한, VIP 적용 스팬드럴 제작, 8) 현장실험을 위한 스팬드럴 설치 및 실험진행, 9) 실험에 따른 스팬드럴의 열 및 건물에너지, VIP 내구성 등 모니터링 및 평가, 10) 한계, 도전성 그리고 추후연구에 대한 방향성 으로 구성되었다. 실험을 진행하기전에, 스팬드럴의 열 거동 특성을 EN ISO 10211에 기반한 3D 열전달 시뮬레이션(Physibel TRISCO)을 통해 평가하였으며, EnergyPlus 시뮬레이션 프로그램을 통해 건물에서의 에너지성능분석을 진행하였다. 해당 건물은 전형적인 사무용 건물로서 천안지역의 날씨데이터를 이용하여 시뮬레이션이 수행되었다. 기준모델은 사전에 진행된 연구의 실험데이터를 통해 검증되었으며, 오차범위는 4%로 확인되었다. 해당 모델은 열교를 줄여 단열성능을 개선하기 위해 다른형태의 내부구성을 갖는 스팬드럴로 디자인되었다. 이에 따라, 스팬드럴 면적의 비율을 0 ? 80% 까지 높여, 일사확보 저하에 따른 조명에너지는 가중되지만 냉난방 에너지를 절감하여 전반적인 건물의 에너지성능을 개선하였다. VIP의 열성능실험은 열량계(Heat Flow Meter; EKO HC-074)를 이용하여 평가되었으며, ISO 16478에 따라 설명된 압력보상법(Pressure compensation method)을 기반으로하는 시험장비를 통해 분석되었다. 25mm VIP의 평균 열전도율(중앙 값)은 0.0041 W/mK인 반면 유효 열전도율(열교 고려 값)은 0.0054 W/mK로 분석되었다(평균 내부압력 4.3 mbar) 실험을 위한 스팬드럴은 총 3가지 케이스로 제작되었으며, Case 1은 기본모델, Case 2는 열차단 모델, Case 3는 복합 모델로 서로다른 내부구성을 갖으며, 현장에서 제조되었다. Case 1과 Case 2는 각각 25mm의 두께를 갖는 VIP가 적용되었으며, Case 3의 경우 10mm와 15mm의 두께의 VIP 2개가 혼합 적용되었다. 10mm 두께의 VIP가 실내 쪽에, 15mm두께의 VIP가 실외 쪽에 구성되었다. 현장실험은 3개의 방(Room)을 갖는 실험주택을 설계하여, 동일한 실내외 환경조건에서 진행되었으며, 각 방은 EHP를 통해 내부공조가 제어되었다. 2019년 11월 9일 날씨를 기준으로, Case 3의 15mm VIP의 외부표면온도는 Case 1, Case 2의 VIP 외부표면온도보다 10oC 이상 낮았으며, 스팬드럴의 내부온도(내부 구성재 표면온도)는 낮시간 동안(4시간) 45-52oC 정도로 확인되었다. 이때 VIP에는 아무 변화가 없었다. 열화상카메라를 통해 스팬드럴이 적용된 커튼월 시스템이 건물에 잘 적용되었는지 판단하였으며(열교 등 외부요소), 큰 문제없이 적절하게 설치된 것으로 확인되었다. 시스템에 구성된 알루미늄 프레임의 표면온도는 지속적으로 실내온도보다 약 2oC, 실외온도보다 약 7oC 높게 나타났다. 실험결과, 시스템의 열 손실량은 Case 1(기본모델) > Case 2(열차단 모델) > Case 3(복합 모델) 순서로 높게 확인되었으며, 이는 시뮬레이션 결과와 동일한 결과를 나타냈다. 그러나 건물에너지소비량 측정에 따른 건물에너지성능은 Case 3보다 Case 2의 경우가 미세하게 높은 것으로 분석되었으며, 이는 계측기기의 오차에 따른 것으로 판단된다. 결과적으로 Case 3 모델이 이상적인 구성으로 분석되었다. 본 연구를 통해 건축분야 연구자, 과학자, 엔지니어 등 관련한 모든 사람들에게 도움이 되기를 희망한다.
Even though lawmakers continue to strengthen building energy efficiency codes, buildings continue to be a major energy consuming sector in many countries. Curtain wall facades or curtain wall systems (CWS) are prominent in modern architecture. Today almost every major city’s skyline is known for high-rise iconic buildings with some level of curtain walls. CWS has become the signature of modern commercial buildings. It has been estimated that glassy facades are responsible for $40 billion in energy loss in US buildings alone, annually. Numerous studies have reiterated that efficient design of curtain wall configuration can significantly cut down on CWS energy use footprint. The thermal and energy performance of curtain wall facades can be improved by incorporating efficiently insulated spandrel units in areas such as slabs/plenums to hide existing building services or areas where concealment of indoor space is required. The aim of this thesis was to propose, develop and examine the thermal and energy performance of optimized curtain wall spandrel with integrated vacuum insulation panel (VIP). The technologies of curtain walling and utilizing vacuum as a thermal barrier are not entirely new, but solutions towards their proper integration into responsive facades represent novelty elements in this work. The main body of the study employed both numerical and in-situ experimental methods based on real-scale mockup investigations. The study constitutes ten (10) parts, namely: (i) concept and derivation of governing heat transfer equations, (ii) model and its validation, (iii) VIP integration configurations, (iv) overall thermal performance considering 2D/3D thermal bridges and internal surface temperatures, (v) building energy and vision-spandrel ratio effect, (vi) in-lab tests focused on VIP characterization, (vii) fabrication of spandrels with integrated VIP based on optimum numerical outcomes, (viii) installation and testing of spandrels in real-scale mockup test building facility, (ix) monitoring and evaluation of overall thermal, building energy and VIP durability, and (x) limitations, challenges and future outlook. Prior to experimental procedures, thermal behavior of the system was characterized via 3D heat transfer simulations using Physibel TRISCO according to EN ISO 10211, while dynamic building energy analysis was carried out using EnergyPlus, based on typical office building operational schedules, while using weather data of Cheonan, Republic of Korea. The baseline model was validated with experimental data from a previous study, and a marginal discrepancy less than 4% was found between them. Further, the validated model was developed into different spandrel configurations, seeking to mitigate thermal bridges while improving insulation performance. Year-round space heating and cooling energy reductions were realized by gradually increasing the spandrel area by ratio from 0 % to 80 %, albeit at the expense of electrical lighting energy. Experimental characterization of VIP’s thermal performance was done using heat flow meter instrumentation (model: EKO HC-074); while its inner pressure was evaluated using custom-made apparatus based on the pressure compensation method (envelope lift-off technique) described in draft ISO 16478. The mean center-of-panel thermal conductivity of 25mm VIP was 0.0041 W/mK while it’s effective thermal conductivity was 0.0054 W/mK (at mean inner pressure of 4.3 mbar). Three spandrel configurations, namely: Reference Case 1, Thermal Breaker Case 2 and Staggered Case 3 were fabricated onsite using commercially sourced materials. Case 1 was mainly for benchmarking purpose, Case 2 was designed to reduce thermal bridges and Case 3 was purposely designed to safeguard the in-service durability of VIP. Case 1 and Case 2 had one single-layer 25mm thick VIP each, while Case 3 used double-layer staggered VIPs of thicknesses 10mm and 15mm. The outer lying 10mm thick VIP shielded the inner lying 15mm thick VIP from fluctuating outdoor conditions. A real-scale mockup building facility was designed to have three test rooms and fabricated in a manner to ensure the test rooms were exposed to same outdoor and indoor environmental conditions. Indoor temperatures in both test and service rooms were controlled by an electric heat pump (EHP) air conditioning system. In particular, on a representative day (9th November 2019), the exterior face temperature of the 15mm thick VIP of case 3 was over 10oC lower than the exterior face temperature of other VIPs. The peak temperature inside the spandrel cavity remained in the range of about 45-52oC for nearly 4 hours, nonetheless VIPs showed no failure. Further, infra-red thermography assessments showed that VIPs had been properly integrated in the system, with no defects or failure. Also, aluminum frame always had higher surface temperature of around 2oC in indoors and 7oC towards outdoors, more than sandwich spandrel layers area. Experimental results showed an increasing trend for heat loss in the order: Reference Case 1 ? Thermal Breaker Case 2 ? Staggered Case 3; which confirmed simulation results. However, measured building energy consumption for similar test rooms with south facade constructed of Thermal Breaker Case 2 spandrel (64 kWh/month) showed marginally better energy performance than that of staggered case 3 spandrel (77 kWh/month). This is attributed to insensitivity of the apparatus used to measure metered energy consumption. All in all, it can be concluded that staggered case 3 configuration is ideal for the integrated VIP. This work is a small step to inspire building researchers, scientists and engineers, and general stakeholders in the building industry.
목차
I. Introduction 11. Background 12. Research aim and objectives 63. Structure of Thesis 74. Implications and contribution to knowledge 9II. State-of-the-art review 111. Preamble 112. Curtain Wall System (CWS) 111) Brief overview and development 112) Types of curtain walling 15(1) Stick system 15(2) Unitized system 16(3) Unit mullion system 17(4) Point-loaded structural glazing system 18(5) Column cover and spandrel system 193) Curtain wall/highly glazed faade energy performance 204) Curtain wall system insulation constraints 223. Vacuum Insulation Panel (VIP) 261) Background and development 262) Thermal transport in VIP 433) VIP core material 48(1) Silica based powders 48(2) Fibrous materials 50(3) Foams 53(4) Composites and hybrids 534) VIP envelope material 555) Getters, desiccants and opacifiers 576) Aging mechanisms and service life 594. VIP integrated curtain wall spandrel 635. Chapter summary 71III. Numerical and analytical investigations 731. Preamble 732. Categories of thermal bridges 733. Analytical description and heat transfer 754. Numerical modeling procedures 781) Modeling and validation 782) VIP spandrel configurations 803) Assessment of curtain wall vision-spandrel area on building energy 845. Numerical results and discussion 871) Thermal behavior of CWS 872) Thermal bridging/effective thermal conductivity of decoupled VIP spandrels 893) Evaluation of building energy implications of various vision-spandrel ratios 946. Limitations and challenges 977. Chapter conclusion 97IV. Experimental assessments 991. Preamble 992. Specifications and measurement of VIP properties in Lab 991) Specifications of VIP 992) VIP inner pressure measurement using foil lift-off method 1023) VIP thermal conductivity measurement using heat flow meter 1033. VIP spandrel configuration, fabrication and installation in test building facility 1051) VIP spandrel final designs 1052) VIP spandrel fabrication 1093) Overview of real-scale mockup building facility 1104) Installation of VIP spandrels and set-up of monitoring system 1134. Experimental results and discussion 1171) Thermal performance of VIP 117(1) Center-of-panel thermal conductivity and initial inner pressure 117(2) Effective thermal conductivity including thermal bridge 1192) Thermal performance of VIP spandrels 1193) Building energy evaluation 1254) VIP durability 1255. Limitations and challenges 1286. Chapter conclusion 129V. Conclusions and outlook 1311. Overview and motivation 1312. Conclusions 1333. Recommendations for future studies 137References 138ABSTRACT 155Acknowledgments 161Journal publications 162Conference presentations 163Appendices 164Appendix A: Determination of VIP inner pressure 164Appendix B: Thermophysical properties of mockup building envelope 175Appendix C: Prefabrication process of mockup building facility 176Appendix D: Site re-assembly of test facility 179