메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이태경 (충남대학교, 忠南大學校 大學院)

지도교수
이윤곤
발행연도
2019
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수7

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Air pollutants tamper with energy budget. As a result they change the climate. Also pollutants have an negative effect on ecosystem, cause visibility impairment and adversely affect human health. Air pollution is associated with increasement of premature mortality and cardiovascular disease. Metropolitan cities are densely populated with people and crowded with pollutants sources. Many studies suggest air quality is getting worse, especially in cities. For the constant monitoring of air pollution, K-eco (Korea Environment Corporation) made ground observational network. To mitigate the damage from air pollution, understanding spatiotemporal distribution of pollutants is essential. Meteorological condition should be considered as priority factor to find out the distribution of air pollutants. Under certain meteorological condition, accumulation of pollutants can be accelerated and severe episode can occur. Meteorology can affect on formation of secondary pollutants, which are created from chemical reaction with each other or atmospheric compounds, such as water vapor, O3 and NO. The purpose of this study is to investigate the spatiotemporal (monthly, weekly, diurnal) variability of surface air pollutants (PM10, PM2.5, SO2, NO2, O3, CO), relationship with meteorological condition and meteorological influence on relationship between trace gases (SO2, NO2, O3, CO) and particulate matters (PM10, PM2.5) in seven metropolitan area (Seoul, Incheon, Daejeon, Gwangju, Daegu, Busan, Ulsan).
Surface air pollutants (PM10, PM2.5, SO2, NO2, O3, CO) hourly data measured at urban monitoring network are used for the period of 2015-2017. Hourly meteorological data at each city are used. Five factors, temperature (℃), wind speed (m/s), relative humidity (%), cloud amount (tenth), visibility (m) are used in this study, for same period.
Pollutants’s variability of diverse spatial and temporal scales are analyzed. Most pollutants (PM10, PM2.5, SO2, NO2, O3, CO) have low concentration in summer, and high in winter. O3 is high in spring because of photochemical reaction. To identify anthropogenic effect impacts of air pollutants, APD (Average Percent Departure) and WCI (Weekly Cycle Index) suggested in Georgoulias and Kouridis (2011) are applied. NO2 and O3 show distinct characteristic called weekend effect. PM10, PM2.5, SO2, NO2, CO peak at rush hour (KST 08:00-10:00), whereas O3 does at afternoon (KST 14:00-16:00).
Influences of meteorological variables are examined through the comparison of correlation coefficients between meteorological factors and pollutants. PM10, PM2.5, SO2, NO2, CO have negative correlations with temperature and wind speed, respectively. O3 has distinctive feature, which has positive correlation with temperature and wind speed, while it does negative correlation with relative humidity. O3 characteristics can be explained by photochemical reaction.
We analyzed significance of meteorological condition through qualitative analysis. Meteorological variables are categorized as values. Correlation coefficients of Each meteorological variable group between gas phase pollutants (SO2, NO2, O3, CO) and particulate matters (PM10, PM2.5) are compared. The relationship of O3 and particulate matters (PM10, PM2.5) is sensitive to temperature. They have negative correlation below 0℃ and positive correlation above 20℃. Correlation coefficients between SO2 and particulate matters (PM10, PM2.5) increase when the wind becomes strong. It implies the effect of transport. Few pollutants (SO2, NO2) and PM’s relationship change according to cloud amount. It can be related to cloud chemistry (Cheng et al., 2016).
This study investigated the spatiotemporal variability of surface air pollutants (PM10, PM2.5, SO2, NO2, O3, CO) and provided influence of meteorological variables in metropolitan cities, Korea. For more improvement of this study, wind direction and precipitation will be considered in future.

목차

제 1 장 서론 1
제 2 장 자료 및 방법 6
2.1 자료 6
2.1.1 대기오염물질 배출량 6
2.1.2 대기오염측정자료 7
2.1.3 기상자료 9
2.1.4 황사관측일 9
2.2 방법 11
2.2.1 오염물질 농도의 주간 변동 지수 11
2.2.2 상관성 분석 12
제 3 장 한반도 대기오염물질의 농도 변동성 14
3.1 대기오염물질 배출량 분포 14
3.2 대기오염물질의 계절 및 월별 농도 분포 20
3.3 대기오염물질의 주간 및 일간 변동성 25
제 4 장 기상인자와 대기오염물질 농도의 관계 30
4.1 기온과 오염물질 농도의 상관성 30
4.2 풍속과 오염물질 농도의 상관성 40
4.3 습도와 오염물질 농도의 상관성 50
4.4 운량과 오염물질 농도의 상관성 59
4.5 시정과 오염물질 농도의 상관성 68
제 5 장 기상인자에 따른 오염기체와 미세먼지 농도의 관계 변화 78
5.1 기온에 따른 변화 78
5.2 풍속에 따른 변화 92
5.3 습도에 따른 변화 107
5.4 운량에 따른 변화 120
5.5 시정에 따른 변화 135
제 6 장 결론 및 토의 149
참고문헌 155
Abstract 162

최근 본 자료

전체보기

댓글(0)

0