메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김정민 (경상대학교, 경상대학교 대학원)

지도교수
최병근
발행연도
2019
저작권
경상대학교 논문은 저작권에 의해 보호받습니다.

이용수10

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The need for condition monitoring and fault diagnosis is expanding to ensure the reliability and safety of machinery. Condition monitoring is confirmed the status of the machine in real time, minimizing losses for the failure. And fault diagnosis is enabled planned maintenance by finding fault early. The pipe is widely used in industrial fields such as power plants, large ships, automobiles and aviation. Also reliability and stability are required. As technology advances, researches on predictive maintenance based on machine learning are under way. However, there is no research related to monitoring and diagnosis using machine learning algorithms in pipe. In particular, pipe involves a lot of noise, so signal processing is also needed.
Therefore, in this paper, the signal processing and the machine learning algorithm is applied for pipe condition monitoring and fault diagnosis. And classification performance is calculated. Through this process, signal processing and machine learning algorithms are analyzed that are suitable for pipe. The experiment is carried out according to the operation conditions(temperature and flow rate) and fault(fault and form) of the pipe. Before applying signal processing and machine learning algorithms, reliability is verified through comparison of experimental and analysis values. Signal processing is performed to minimize the noise signal of the pipe. And the classification performance is evaluated using the machine learning algorithm.
Through this, the purpose is to study signal processing & machine learning suitable for pipe condition monitoring and fault diagnosis.

목차

Ⅰ. 서론 1
1. 연구 배경 및 현황 1
2. 연구 절차 및 목적 3
Ⅱ. 이론적 배경 5
1. 음향방출 5
2. 신호처리 7
3. 기계학습 13
Ⅲ. 실험 및 해석 25
1. 상태 및 결함에 따른 배관 실험 25
2. 배관 수치해석 30
Ⅳ. 신호처리 및 기계학습 34
1. 운전 조건에 따른 분류 34
2. 결함에 따른 분류 40
3. 운전 및 결함에 따른 복합분류 46
Ⅴ. 결론 52

최근 본 자료

전체보기

댓글(0)

0