본 연구는 니파야자 꽃순의 기능성 식품개발과 고부가가치 소재로서의 가능성을 살펴보고 기초자료를 제공하고자 실시하였다. 니파야자 꽃순의 이화학적 품질특성을 분석하였으며, 니파야자 꽃순을 꽃봉오리와 꽃줄기 추출물의 기능성을 분석하였고, 기능성 성분함량이 높은 꽃봉오리 분말을 첨가하여 생면을 제조한 후 이화학적 특성과 품질특성을 조사하여 우수한 생면을 개발하고자 하였다. 1. 니파야자 꽃순의 이화학적 품질특성으로 색도는 L값 67.86, a값 9.58, b값 25.74이며 일반성분 함량은 수분 7.5%, 조단백질 13.56%, 조지방 0.84%, 조회분 9.25%로 분석되었다. 아미노산은 총 15종으로 분석되었으며 Arginine>Aspartic acid>Glutamic acid 순으로 나타내었다. 비타민 함량을 측정한 결과는 비타민 A 175.00 RE/100g, 비타민 E 52.78 mg/100g, 비타민 C 13.07 mg/100g이며 비타민 B1, 비타민 B2, β-카로틴 순으로 분석되었다. 무기질 함량은 12가지 분석대상 중에서 K, Cl, Na, Mg, S, Ca의 순서로, 가장 함량이 높은 것은 K 3,051.30 mg/100g 이었다. 조사포닌은 128.24 mg/100g로 나타났으며 총 폴리페놀 함량은 11,855.47 mg/100g, 총 플라보노이드 함량은 71.73 mg/100g로 나타내었다. 2. 니파야자 꽃봉오리와 꽃줄기 추출물의 기능성으로 열수 추출물, 80% 에탄올 추출물, 80% 메탄올 추출물과 80% 아세톤 추출물의 수율은 꽃봉오리는 열수 추출물에서 20%로 가장 높았으며 메탄올>아세톤>에탄올 추출물 순으로 나타내었다. 꽃줄기는 열수 추출물 18.2%로 높았으며 꽃봉오리와 꽃줄기에서 열수 추출물이 가장 높은 수율을 나타내었으며, 꽃봉오리가 꽃줄기보다 높은 수율을 나타내었다. 각 용매별 추출물의 총 페놀성 화합물의 꽃봉오리의 함량은 아세톤 추출물 32.2 mg/g로 높은 함량을 나타내었으며 에탄올>열수>메탄올 추출물 순이며 꽃줄기는 열수 추출물 12.7 mg/g의 함량을 나타내었다. 꽃봉오리와 꽃줄기 경우 열수 추출물에서 비교적 높은 함량을 나타내었으며 꽃봉오리가 꽃줄기보다 높은 함량을 확인할 수 있었다. DPPH 라디칼 소거활성 IC50 값은 꽃봉오리의 아세톤 추출물에서 28.6 μg/mL, 꽃줄기의 아세톤 추출물 365.4 μg/mL로 아세톤 추출물은 니파야자 꽃봉오리와 꽃줄기에서 모두 높은 소거활성이 나타났으며 꽃봉오리가 꽃줄기보다 높은 전자공여능을 확인할 수 있었다. ABTS+ 라디칼 소거활성 IC50 값은 꽃봉오리의 에탄올 추출물 9.5 μg/mL, 꽃줄기의 열수 추출물 49.6 μg/mL로 꽃봉오리의 에탄올 추출물이 높게 나타내었다. α-Glucosidase 저해활성 IC50 값은 꽃봉오리의 메탄올 추출물은 11.4 μg/mL, 열수 추출물, 에탄올 추출물 25.1 μg/mL로 모두 유사한 활성을 나타내었다. 꽃줄기의 열수 추출물 58.3 μg/mL로 강한 α-glucosidase 저해 활성을 나타내었으며 이들 활성은 positive control인 Acarbose의 IC50 값인 150.6 μg/mL보다 모든 추출물에서 높은 활성을 나타내었으며 꽃봉오리가 꽃줄기보다 높은 α-glucosidase 저해 활성을 나타내었다. 항당뇨합병증관련 효능평가를 위해 수행한 결과 꽃봉오리와 꽃줄기 모두 약한 활성을 나타내었다. 3. 니파야자 꽃봉오리 분말첨가량을 달리하여 제조한 생면의 조리 전.후의 색을 측정한 결과 첨가군의 생면과 조리면의 L값은 낮았으며 첨가군의 a값과 b값은 높게 나타나 분말첨가 농도가 증가할수록 색은 진하게 나타내었다. 조리면의 중량은 첨가군이 높게 나타났으며, 부피는 대조군보다 첨가군이 증가하는 경향이 보였으며, 조리액의 탁도는 첨가군에서 대체적으로 높게 나타내었다. pH는 분말첨가량이 증가할수록 pH는 낮아졌으며 당도 함량은 분말 첨가량이 증가할수록 첨가군이 감소하는 경향을 나타내었다. 일반성분 함량은 수분, 조단백질, 조지방, 조회분 모두 첨가군이 높게 측정되었으며 식이섬유 함량은 대조군에 비해 꽃봉오리 분말 7% 첨가 생면이 약 3배 높게 나타내었다. 조리면의 물성 측정 결과는 경도와 탄력성은 첨가량이 증가할수록 증가하는 경향을 보였으며 응집성, 검성 및 부착성은 꽃봉오리 분말첨가량이 증가할수록 감소하는 경향을 나타내었다. 총 폴리페놀 함량은 7% 첨가군이 대조군보다 약 4배 높게 나타내었으며 DPPH 라디칼 소거활성 IC50 값은 대조군 146.62 μg/mL보다 꽃봉오리 분말 7% 첨가군 1.75 μg/mL로 약 80배의 높은 소거활성을 나타내었다. 조리면의 관능평가에서 기호도에서는 외관, 색, 맛, 조직감, 떫은맛, 전반적인 기호도에서 꽃봉오리 분말첨가 3%가 모든 항목에서 높게 평가되었으며 전반적으로 대조군보다 꽃봉오리 분말첨가군이 좋은 평가를 받았다. 강도에서 색과 향, 떫은맛은 7% 첨가군이 높은 평가를 받았으며 탄력성과 씹힘성은 전반적으로 대조군보다 높게 평가되었다. 이와같이 니파야자 꽃순의 이화학적 품질특성를 분석한 결과 다량의 무기질과 폴리페놀을 함유하고 있으며, 기능성 평가에서 항산화 활성이 우수하며 특히 항당뇨 활성이 높게 나타내어 기능성 식품소재로 판단된다. 이에 본 연구는 꽃봉오리 분말 첨가량을 달리한 생면의 품질과 기호도를 높이는데 필요한 기초자료를 제공하였으며 니파야자 꽃순을 이용한 다양한 식품의 개발은 국민건강과 더불어 고부가가치로 식품 신소재 개발에 기여할 것으로 사료된다.
This study was conducted to investigate the possibility of the development of Nypa fruticans wurmb flower stalk as a functional food and as high value-added material and to provide the baseline data. This study analyzed the physicochemical quality properties of Nypa fruticans wurmb flower stalk and analyzed the functionality of extracts from the flower bud and flower stem of Nypa fruticans wurmb flower stalk, added flower bud powder with high functional component content to produce wet noodles and would develop excellent wet noodles by investigating physicochemical characteristics and quality properties.
1. As for the physicochemical quality properties of Nypa fruticans wurmb flower stalk, for the chromaticity, Value L was 67.86, value a, 9.58, and value b, 25.74. The contents of the general components consisted of water 7.5%; crude protein 13.56%; crude fat 0.84%, and crude ash 9.25%. As a result of an analysis, there were 15 kinds of amino acid in total, the order was as follows: Arginine, Aspartic acid and Glutamic acid. As a result of the measurement of vitamin contents, there were vitamin A at 175.00 RE/100g, vitamin E, at 52.78 mg/100g, and vitamin C, at 13.07 mg/100g, followed by vitamin B1, vitamin B2 and β-carotene. The content of minerals was in the following order, K, Cl, Na, Mg, S and Ca among the 12 subjects of the analysis, and what had the highest content was K at 3,051.30 mg/100g. There was crude saponin at 128.24 mg/100g; the total polyphenol content, at 11,855.47 mg/100g, and the total flavonoid content, at 71.73 mg/100g.
2. As for the functionality of Nypa fruticans wurmb flower bud and flower stem extracts, hot water extract, the yields of 80% ethanol extract, 80% methanol extract and 80% acetone extract were the highest in the hot water extract at 20%, followed by the methanol, acetone and ethanol extracts for extracts from the flower bud. For extracts from the flower stem, it was high in the hot water extract at 18.2%. In the flower bud and the flower stem, the hot water extract showed the highest yield, and flower bud showed a yield higher than the flower stem. As for the total content of the phenolic compound in extracts from the flower bud by each solvent was the highest in the acetone extract at 32.2 mg/g, followed by the ethanol, hot water and methanol extracts, while the flower stem showed content at 12.7 mg/g in the hot water extract. The flower bud and the flower stem showed relatively high contents in the hot water extract, and it was noted that the flower bud had higher contents than the flower stem did. IC50 value of DPPH radical scavenging capacity was 28.6 μg/mL in the acetone extract from the flower bud and 365.4 μg/mL in the acetone extract from the flower stem. Thus, the acetone extract showed a high scavenging capacity in both extracts from the flower bud and the flower stem of Nypa fruticans wurmb, and it was noted that the flower bud had a higher electron donating ability than the flower stem did. IC50 value of ABTS+ radical scavenging capacity was 9.5 μg/mL in the ethanol extract from the flower bud and 49.6 μg/mL in hot water extract from the flower stem. It was higher in the ethanol extract from the flower bud. IC50 value of α-Glucosidase inhibitory activity was 11.4 μg/mL in the methanol extract from the flower bud and 25.1 μg/mL in the hot water extract and ethanol extract. All showed similar activities. The hot water extract from the flower stem showed strong α-glucosidase inhibitory activity at 58.3 μg/mL, and showed higher activity than 150.6 μg/mL, IC50 value of positive control, Acarbose in all the extracts showed higher α-glucosidase inhibitory activity than the flower stem did. As a result of an evaluation of diabetic complications-related efficacy, both the flower bud and the flower stem showed weak activity.
3. As a result of the measurement of the color before and after cooking the wet noodles produced by adding differing amounts of Nypa fruticans wurmb flower bud powder, in the group to which it was added, Value L of wet noodles and cooked noodles was low, while value a and value b of the group were high. Accordingly, the more the concentration of the powder added, the denser the color became. The weight of cooked noodles was high in the group to which it was added; the volume tended to increase in the group to which it was added than in the control group; and the turbidity of the cooking liquid was generally higher in the group to which it was added. As for pH, the more the amount of the powder added, the lower the pH became; and the more the amount of the powder added, the less the sugar content in the group to which it was added tended to become. As for the content of general components, the water, crude protein, crude fat and crude ash were all measured higher in the group to which it was added; and the dietary fiber content was about three times higher in the wet noodles to which 7% flower bud powder was added than in the control group. As a result of the measurement of the physical properties of the cooked noodles, the more it was added, the more the hardness and elasticity tended to become; and the more the amount of the flower bud powder added, the less the cohesiveness, gumminess and adhesion tended to become. The total polyphenol content was about four times higher in the group to which 7% powder was added than in the control group, and as for IC50 value of DPPH radical scavenging capacity, there was a scavenging capacity of 1.75 μg/mL in the group to which 7% flower bud powder was added about 80 times higher than 146.62 μg/mL in the control group. In the sensory evaluations of the cooked noodles, by preference, appearance, color, taste, texture, acerbity, and the overall preference was highly evaluated in the group to which 3% flower bud powder was added, and overall, the group to which flower bud powder was added received better evaluations than the control group. By strengths, color, fragrance and acerbity were highly evaluated in the 7% the group to which it was added, and resilience and chewiness were overall, evaluated higher than in the control group. As a result of the analysis of the physicochemical quality properties of Nypa fruticans wurmb flower stalk, it contains large quantities of minerals and polyphenol, and in functional evaluations, it has excellent antioxidant activity and especially, high antidiabetic activity, so it is judged to be a functional food material. Thus, this study provided the baseline data necessary for increasing the quality of wet noodles with differing amounts of flower bud powder added and preference for them, and it is judged that the development of a variety of food using Nypa fruticans wurmb flower stalk will contribute to developing high value-added new food materials.